Title: New Spectral Classification Technique
1New Spectral Classification Technique for Faint
X-ray Sources Quantile Analysis
JaeSub Hong Spring, 2006 J. Hong, E. Schlegel
J.E. Grindlay, ApJ 614, 508, 2004 The
quantile software (perl and IDL) is available at
http//hea-www.harvard.edu/ChaMPlane/quantile.
2Extracting Spectral Properties or Variations from
Faint X-ray sources
- Hardness Ratio
- HR1 (H-S)/(HS) or HR2 log10(H/S)
- e.g. S 0.3-2.0 keV,
- H 2.0-8.0 keV
- X-ray colors
- C21 log10(C2/C1) soft color
- C32 log10(C3/C2) hard color
- e.g. C1 0.3-0.9 keV,
- C2 0.9-2.5 keV,
- C3 2.5-8.0 keV
3Hardness Ratio
- Pros
- Easy to calculate
- Require relatively low statistics (gt 2 counts)
- Direct relation to Physics (count ? flux)
- Cons
- Different sub-binning among different analysis
- Many cases result in upper or lower limits
- Spectral bias built in sub-band selection
4Hardness Ratio
- Pros
- Easy to calculate
- Require relatively low statistics (gt 2 counts)
- Direct relation to Physics (count ? flux)
- Cons
- Different sub-binning among different analysis
- Many cases result in upper or lower limits
- Spectral bias built in sub-band selection
e.g. simple power law spectra (PLI ?) on an
ideal (flat) response S band H band
? 0 ? 1 ? 2 0.3 4.2 4.2 8.0
keV 11 41 271 0.3 1.5
1.5 8.0 keV 15 11 51 0.3 0.6
0.6 8.0 keV 124 14 11
5Hardness Ratio
- Pros
- Easy to calculate
- Require relatively low statistics (gt 2 counts)
- Direct relation to Physics (count ? flux)
- Cons
- Many cases result in upper or lower limits
- Spectral bias built in sub-band selection
e.g. simple power law spectra (PLI ?) on an
ideal (flat) response S band H
band Sensitive to (HR0) 0.3 4.2 4.2 8.0
keV ? 0 0.3 1.5 1.5 8.0 keV ?
1 0.3 0.6 0.6 8.0 keV ? 2
6X-ray Color-Color Diagram
C21 log10(C2/C1) C32 log10(C3/C2) C1
0.3-0.9 keV C2 0.9-2.5 keV C3 2.5-8.0
keV Power-Law ? NH
Intrinsically Hard
More Absorption
7X-ray Color-Color Diagram
- Simulate 1000 count sources with spectrum at the
grid nods. - Show the distribution (68) of color estimates
for each simulation set. - Very hard and very soft spectra result in wide
distributions of estimates at wrong places.
8X-ray Color-Color Diagram
- Total counts required in the broad band (0.3-8.0
keV) to have at least one count in each of three
sub-energy bands - Sensitive to C210 and C320
9 Hardness ratio X-ray colors
-
- Use counts in predefined sub-energy bins.
- Count dependent selection effect
- Misleading spacing in the diagram
10 Hardness ratio X-ray colors
-
- Use counts in predefined sub-energy bins.
- Count dependent selection effect
- Misleading spacing in the diagram
e.g. simple power law spectra (PLI ?) on
an ideal (flat) response S band, H
band Sensitive to Median 0.3 4.2, 4.2
8.0 keV ? 0 4.2 keV 0.3 1.5, 1.5 8.0
keV ? 1 1.5 keV 0.3 0.6, 0.6 8.0
keV ? 2 0.6 keV
11How about Quantiles?
Search energies that divide photons
into predefined fractions.
median, terciles, quartiles, etc
e.g. simple power law spectra (PLI ?) on
an ideal (flat) response S band, H
band Sensitive to Median 0.3 4.2, 4.2
8.0 keV ? 0 4.2 keV 0.3 1.5, 1.5 8.0
keV ? 1 1.5 keV 0.3 0.6, 0.6 8.0
keV ? 2 0.6 keV
12Quantiles
- Quantile Energy (Ex) and Normalized Quantile
(Qx) - x of total counts at E lt Ex
-
- Qx (Ex-Elo) / (Elo-Eup), 0ltQxlt1
-
- e.g. Elo 0.3 keV, Eup8.0 keV in 0.3 8.0 keV
- Median (mQ50)
- Terciles (Q33, Q67)
- Quartiles (Q25, Q75)
13Quantiles
- Low count requirements for quantiles
- spectral-independent
- 2 counts for median
- 3 counts for terciles and quartiles
-
- No energy binning required
- Take advantage of energy resolution
- Optimal use of information
14Hardness Ratio
HR1 (H-S)/(HS) -1 lt HR1 lt 1
HR2 log10(H/S) -? lt HR2 lt ?
?
HR2 log10 (1HR1)/(1-HR1)
Median
mQ50 (E50-Elo)/(Eup-Elo) 0 lt m lt 1
qDx log10 m/(1-m) -? lt qDx lt ?
?
15Hardness ratio simulations (no background)
S0.3-2.0 keV H2.0-8.0 keV
Fractional cases with upper or lower limits
16Hardness Ratio vs Median (no background)
Hardness Ratio 0.3-2.0-8.0 keV
Median 0.3-8.0 keV
17Hardness Ratio vs Median (sourcebackground 11)
Hardness Ratio 0.3-2.0-8.0 keV
Median 0.3-8.0 keV
18Quantile-based Color-Color Diagram (QCCD)
E50
- Quantiles are not independent
- mQ50 vs Q25/Q75
- Power-Law ? NH
- Proper spacing in the diagram
- Poor mans Kolmogorov -Smirnov (KS) test
More Absorption
Intrinsically Hard
An ideal detector 03-8.0 keV
19Overview of the QCCD phase space
20 Color estimate distributions (68) by
simulations for 1000 count sources
E50
Quantile Diagram 0.3-8.0 keV
Conventional Diagram 0.3-0.9-2.5-8.0 keV
21Realistic simulations
E50
ACIS-S effective area energy resolution
An ideal detector
22 100 count source with no background
Quantile Diagram 0.3-8.0 keV
Conventional Diagram 0.3-0.9-2.5-8.0 keV
23 100 source count/ 50 background count
Quantile Diagram 0.3-8.0 keV
Conventional Diagram 0.3-0.9-2.5-8.0 keV
24 50 count source without background
Quantile Diagram 0.3-8.0 keV
Conventional Diagram 0.3-0.9-2.5-8.0 keV
25 50 source count/ 25 background count
Quantile Diagram 0.3-8.0 keV
Conventional Diagram 0.3-0.9-2.5-8.0 keV
26Energy resolution and Quantile Diagram
- Elo 0.3 keV
- Ehi 8.0 keV
- ?E/E 10 at 1.5 keV
- E50 from Elo f ?Elo
- to Ehi f ?Ehi
-
- from 0.4 keV
- to 7.8 keV
27Energy resolution and Quantile Diagram
- Elo 0.3 keV
- Ehi 8.0 keV
- ?E/E 20 at 1.5 keV
- E50 from Elo f ?Elo
- to Ehi f ?Ehi
-
- from 0.4 keV
- to 7.6 keV
28Energy resolution and Quantile Diagram
- Elo 0.3 keV
- Ehi 8.0 keV
- ?E/E 50 at 1.5 keV
- E50 from Elo f ?Elo
- to Ehi f ?Ehi
-
- from 0.5 keV
- to 7.0 keV
29Energy resolution and Quantile Diagram
- Elo 0.3 keV
- Ehi 8.0 keV
- ?E/E 100 at 1.5 keV
- E50 from Elo f ?Elo
- to Ehi f ?Ehi
-
- from 0.7 keV
- to 6.5 keV
30Energy resolution and Quantile Diagram
- Elo 0.3 keV
- Ehi 8.0 keV
- ?E/E 200 at 1.5 keV
- E50 from Elo f ?Elo
- to Ehi f ?Ehi
-
- from 1.0 keV
- to 6.0 keV
31Energy resolution and Quantile Diagram
- Elo 0.3 keV
- Ehi 8.0 keV
- ?E/E 500 at 1.5 keV
- E50 from Elo f ?Elo
- to Ehi f ?Ehi
-
- from 1.2 keV
- to 5.0 keV
32Energy resolution and Quantile Diagram
?E/E 10 at 1.5 keV
?E/E 100 at 1.5 keV
33Sgr A (750 ks Chandra)
34Sgr A (750 ks Chandra)
35Sgr A (750 ks Chandra)
36Sgr A (750 ks Chandra)
37Sgr A (750 ks Chandra)
38(No Transcript)
39Swift XRT Observation of GRB Afterglow
- GRB050421 Spectral softening with constant
NH - GRB050509b Short burst afterglow, softer than
the host Quasar
40Score Board
- Spectral Bias
- Stability
- Sub-binning
- Phase Space
- Sensitivity
- Energy Resolution
- Physics
- Quantile
- Analysis
- None
- Good
- No Need
- Meaningful
- Evenly Good
- Sensitive
- Indirect
- X-ray Hardness
- Ratio or Colors
- Yes
- Upper/Lower Limits
- Required
- Misleading?
- Selectively Good
- Insensitive
- Direct
41Future Work
- Find better phase spaces.
- Handle background subtraction better.
- Find better error estimates half sampling, etc.
- Implement Bayesian statistics?
42(No Transcript)
43Conclusion Quantile Analysis
- Stable spectral classification with limited
statistics - No energy binning required
- Take advantage of energy resolution
- Quantile-based phase space is a good indicator
- of spectral sensitivity of the detector.
- The basic software (perl and IDL) is available
at - http//hea-www.harvard.edu/ChaMPlane/quantile.
44Quantile Error Estimates
- In principle, by simulations
- slow and redundant
- Maritz-Jarrett Method bootstrapping
- Q25 Q75 not independent
- MJ overestimates by 10
- 100 count source
- consistent within 5
45Quantile Error Estimates by Maritz-Jarrett Method
- PL ? 2, NH5x1021cm-2
- gt30 count within 10
- lt30 count overestimate up to 50
- MJ requires
- 3 counts for Q50
- 5 counts for Q33, Q67
- 6 counts for Q25, Q75
?mj/?sim
46(No Transcript)