Title: Physics 114
1Electric potential,Systems of charges
2Concepts
- Primary concepts
- Electric potential
- Electric energy
- Secondary concepts
- Equipotentials
- Electonvolt
3Charges in electric fields
- Positive charges experience force along the
direction of the field - Negative charges against the direction of the
field.
-
4Potential electric energy
High PE
High PE
Low PE
Low PE
- Just like gravity electric force can do work
- work does not depend on the path
- it depends only on the initial and final position
- ? there is a potential energy associated with
electric field.
5Electric potential
- PE/q is a property of the field itself called
electric potential V
6Electric potential
- V electric potential is the potential energy of
a positive test charge in electric field, divided
by the magnitude of this charge q. - Electric potential is a scalar (so much nicer!).
- Electric potential is measured in Volts (VJ/C).
- Potential difference between two points DVVb-Va
is often called voltage.
7Charges in electric fields
- Econst
- Force on charge q
- FqE
- Work done by the field to move this charge
- WFddqE
- WPEa-PEbqVa-qVb-qDV
- d EDV
- E DV/d, points from high potential to low
- Sometimes electric field is measured in V/m N/C
b
a
8Non-uniform electric field
9Electric field and potential in conductors
- E0 in good conductors in the static situation.
- E is perpendicular to the surface of conductor.
- Metal hollow boxes are used to shield electric
fields. - When charges are not moving conductor is entirely
at the same potential.
-
-
-
-
-
10Electronvolt
- Energy that one electron gains when being
accelerated over 1V potential difference is
called electronvolt eV - 1eV1.6x10-19C 1V 1.6x10-19J
- Yet another unit to measure energy,
- Commonly used in atomic and particle physics.
11Equipontentials
- Equipotentials
- are surfaces at the same potential
- are always perpendicular to field lines
- Never cross
- Their density represents the strength of the
electric field - Potential is higher at points closer to positive
charge
12Potential of a point charge
- Potential V of electric field created by a point
charge Q at a radius r is - Qgt0 ? Vgt0
- Qlt0 ? Vlt0
- Do not forget the signs!
- Potential goes to 0 at infinity.
- Equipotentials of a point charge are concentric
spheres.
13Superposition of fields
- Principle of superposition
- Net potential created by a system of charges is a
scalar (!) sum of potentials created by
individual charges
-
1
2
Potential is a scalar ? no direction to worry
about.
14Electric Dipole potential
P
- evaluate potential at point P
rD r
r
D rlcosq
q
15Test problem
- What is wrong with this picture?
- A Equipotentials must be parallel to field lines
- B Field lines cannot go to infinity
- C Some field lines point away from the negative
charge - D Equipotentials cannot be closed
-
16Systems of charges
17Work to move a charge
- How much work has to be done by an external force
to move a charge - q1.5 mC
- from point a to point b?
- Work-energy principle
30cm
20cm
15cm
25cm
-
Q110mC
Q2-20mC
18Determine E from V
- Think ski slopes
- If V depends on one coordinate x
- E is directed along x from high V to low
- If V depends on x,y,z
19E near metal sphere
- Find the largest charge Q that a conductive
sphere radius r1cm can hold. - Air breakdown E3x106V/m
Larger spheres can hold more charge
20Capacitance
- Two parallel plates are called a capacitor. When
capacitor is connected to a battery plates will
charge up.
Note net charge 0
- C coefficient, called capacitance, property of
the capacitor. - Capacitance is measured in Farad (FC/V)
21Electric field in a capacitor
- Econst
- E V/d
- points from high potential to low
- When V is fixed (same battery), E depends only on
the d. - Potential
- High next to plate
- Low next to - plate
22Capacitance
- Capacitance depends on the geometry of a capacitor
- e0 8.85. 10-12 C2/N m2-
- permittivity of free space
- A area of plates (m2)
- Same sign charges want to spread out to hold
more charge need large area - d distance between plates (m)
- Opposite sign charges hold each other,
attraction is stronger for shorter d
A
d
23Dielectrics
- Put non-conductive material (dielectric) between
plates - Can hold more charge ? capacitance increases
- K(gt1) dielectric constant
24Charging up a capacitor
- Find the work needed to charge a capacitor C to
voltage V - Take small charge dq and move it across the
capacitor, which is at voltage V at this moment - dWVdq
25Energy storage
- Work to charge a capacitor potential energy
stored in the capacitor
- To use the right formula, watch what is kept
constant - Vconst if C connected to a battery
- Qconst - if C disconnected
26Inserting dielectric
- Capacitor is connected to a battery, supplying
voltage V. How will the energy stored in the
capacitor change if we insert a dielectric (K2)? - C?KC2C capacitance increases
V stays const same battery
Q changes
27Inserting dielectric
- Capacitor is charged to charge Q and disconnected
from a battery. How will the energy stored in the
capacitor change if we insert a dielectric (K2)? - C?KC2C capacitance increases
V can change
Q stays const charge conservation
28Inserting dielectric
Disconnected battery energy decreases Dielectri
c will be sucked in
Connected battery energy increases Dielectric
will be pushed out
29Test problem
- Between two very large oppositely charged
parallel plates at which of the three locations
A, B and C electric potential is the greatest? - A A
- B B
- C C
- D Equal at all three locations.