Title: Quantum measurements: status and problems
1Quantum measurements status and problems
- Michael B. Mensky
- P.N.Lebedev Physical Institute
- Moscow, Russia
MARKOV READINGSMoscow, May 12, 2005
2Quantum Gravity and Quantum Measurements
- M.A.Markov on Qu Meas
- Nature of physical knowledge (1947)
- Three interpretations of QM (1991)
M.A.Markov and Bryce DeWitt 3d Intern. Seminar on
Quantum Gravity Moscow, 1984
3Message of the talk
- Physics of Qu Meas
- Entanglement (? Qu Informatics)
- Phenomenology of Qu Meas
- Open quantum systems and decoherence
- Meta-physics of Qu Meas
- Everetts interpretation and consciousness
4Plan of the talk
- Physics Entanglement and decoherence
- Continuous measurements
- open quantum systems and dissipation
- Quantum informatics
- Bells theorem
- Conceptual problems (M.A.Markov 1947)
- Everett interpretation (M.A.Markov 1991)
5Literature on decoherence
- H.D.Zeh, Found. Phys. 1, 69 (1970) 3, 109 (1973)
- W.H.Zurek, Phys. Rev. D 24, 1516 (1981) D 26,
1862 (1982) - D.Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O.
Stamatescu, H.D. Zeh, Decoherence and the
appearance of a classical world in quantum
theory, - Springer, Berlin etc., 1996
M.M.
6Reduction postulate
- Von Neumann reduction postulate
- ??c1a1? c2a2 ? ? a1?, p1 c1 2
- ? a2?, p2 c2 2
- With projectors P1 a1? ? a1 , P2 a2? ?
a2 - ?? ? P1 ?? , p1?? P1 ??
- ? P2 ?? , p2?? P2 ??
7Generalization of reduction postulate
- Many alternatives (? Pi 1) i
- ?? ? Pi ?? , pi ?? Pi ??
- Fuzzy measurement (?dx Rx Rx 1)
- x
- ?? ? Rx ?? , p(x) ?? Rx Rx ??
8Open systems and continuous measurements
- Decoherence and dissipation from interaction with
environment
Measurement (phenomenology)
Environment
System
System
- Open quantum systems
- continuously measured ones
9Entanglement
- Measuring as an interaction evolution U
- a1??0? ? U a1??0? a1? ?1?
- a2??0? ? U a2??0? a2? ?2?
- Entanglement
- ???0? (c1a1?c2a2?)?0?
c1a1??0?c2a2??0? - ? U (c1a1??0?c2a2??0?) c1a1??1?c2a2??2
?
Entangled state
10Decoherence
- Entanglement
- ?0 ? ?? ?0? (c1a1? c2a2?) ?0?
- ? c1a1??1? c2a2??2? ??
- Decoherence
- ?0 ?? ?? (c1a1? c2a2 ?) (c1? a1 c2?
a1) - ? ? Tr? ?? ?? c12 a1? ? a1 c22
a2? ? a2
Reduction interpretated
11Irreversible and reversible decoherence
- Macroscopic uncontrollable environment
- ? practically irreversible decoherence
Environment
Reservoir
Meter
System
- Microscopic or mesoscopic environment
- ? reversible
- decoherence
info
Meter
System
deco
Reversion U ? U-1
12Restricted Path Integrals (RPI)
- Continuous measurements
- presented by RPI
- Monitoring an observable
- ? decoherence
- Non-minimally disturbing monitoring
- ? dissipation
13Ideology of Feynman paths
q
q
- Feynman
- path integral over all paths
q
t
- Propagator Ut (q'',q') ?dq exp (i/?) Sq
- ? dp dq exp (i/?) ?0t (pdq-Hdt)
- Evolution ?t? Ut ?0?, ?t Ut ?0 Ut
14Restricting Feynman path integral
?
q
- Restricted Path Integral
- the paths, compatible
- with the readout
q
q
t
- Partial propagator Uta(q'',q')
- ?dpdq wa p,q exp(i/?) ?0t (p dq - H dt)
Weight functional
Evolution ?ta? Uta ?0?, ?t a Uta ?0
(Uta)
15Probabilities of measurement readouts
?
q
- Probability of the result
- PaTr ?ta Tr Uta?0(Uta)
- Non-selective description
- ?t ? d? ?ta
- ? d? Uta ?0 (Uta)
- Generalized unitarity
- ? d? (Uta) Uta 1
q
q
t
16Monitoring an observable
A
a
- Observable AA(p,q,t)
- Measurement readout
- a a(t) 0 ? t? ? t
A
A
t
- Gaussian weight functional
- wa p,q exp-? ?0t A(t) - a(t)2 dt
- Why Gaussian?
- Quantum Central Limit Theorem!
17Effective Schroedinger equation
- Restricted Path Integral for monitoring A
- Uta(q'',q')?dpdq exp(i/?)?0t (p dq - H
dt) - - ? ?0t
A(t) - a(t)2 dt - Effective Hamiltonian ?
- Ha (p,q,t) H(p,q,t) - i ? ? (A(p,q,t) -
a(t))2 - Effective Schroedinger equation
- ??ta?/?t - (i/?) H - ? (A - a(t))2 ?ta?
Imaginary potential
18Density matrix and master equation
- Selective description
- ?ta? Uta?0?
- ? non-selective (total density matrix)
- ?t ? d a ?ta ? d a Uta ?0 (Uta)
- Density matrix ?t satisfies master equation
- ??t/?t - (i/?) H , ?t - (?/2) A , A , ?t
- ?
decoherence !
19Non-minimally disturbing monitoring
- Imaginary terms in the exponent
- wa exp ? dt - ? (A-a(t))2 - (i/?) ? a(t)
B - Disturbed evolution
- conditioned by the observation of a(t)
- Uta ? dpdq exp ?0t (i/?) ( p dq-H(q,p)
dt) - - ? (A(q,p)-a(t))2 - (i/?) ? a(t) B(q,p)
20Master equation
- Calculate the selective density matrix
- ?ta Uta ?0(Uta)
- and the total density matrix
- ?t ? da ?ta
- The resulting ?t satisfies the master equation
- ? ? /? t - (i/?) H , ? - (i ? /2 ?) B ,
A , ? - - (?2/8 ? ?2) B , B , ? - (?/2) A ,
A , ?
Dissipation
Decoherence
Correction to CL
21Lindblad form of the master equation
- Introduce the Lindblad operator
- L A- i(?/2 ? ?)B
- The equation takes then the Lindblad form
- ? ? /? t - (i/?) H - i(? ? /4) ( (L)2-
L 2) , ? - - (?/2) ( L L ? - 2 L ? L ? L
L ) - Hamiltonian is shifted by the measurement
No positivity in CL
- Lindblad form ? positivity of ?
- Dissipation results from continuous measurements
22Dissipative harmonic oscillator
- Hamiltonian of an oscillator H P 2/2 ?2 Q2
/2 - Momentum is monitored AP, B? Q
- ? ? /? t - (i/?) H , ? - (i ? ?/2 ? ) Q ,
P, ? - - (?2? 2/8 ? ? 2) Q , Q , ? - (?/2)
P, P, ? - Both momentum and position are monitored
- Brownian motion of the oscillator is interpreted
as an effect of monitoring its momentum by an
environment
No such term in Caldeira Leggett
23Dynamical role of information
- Von Neumann's projection
- final state depends on the information
- RPI projecting process
- Dynamics of a measured system
- depends on the information escaping from it
- The role for quantum informatic devices
- the processed information not escaping
24Quantum informatics
- Qubits
- Quantum computer
- Quantum cryptography
- Quantum teleportation
25Qubits
- Two-level system
- 0?, 1?
- Superposition
- a 0? b 1?
- ? quantum parallelism (entangled states)
- (0? 1?)2 00? 01? 10? 11?
- (0? 1?)N ?02N -1 x?
26Quantum computer
- Quantum parallelism
- (0? 1?)N ?02N -1 x?
- Calculation time t?P(N) instead of t ?eN
- Quantum algorithms
- Factorization in prime numbers
- finding the period of a periodic function
- (digital Fourier decomposition)
- ?? Cryptography
27Quantum cryptography
- Quantum cloning ??A? ? ?? ?? A?
impossible - ?1?A? ? ?1? ?1? A1?, ?2?A? ? ?2? ?2?
A2? - Linearity (?1? ?2?)A? ? (?1? ?1??2?
?2?) A? - not (?1? ?1??2? ?2??1? ?2??2?
?1?)A? - Sequence of states 1? 0? 1?...1?
- Eavesdropping discovered (0? and 1?
non-orthogonal) - Distribution of code sequences
- (factorization in prime numbers used)
28Quantum teleportation
Meas Result i
A
B
??A a 0? b 1?
?B
? Ui ?B ??B
Meas
?A?
Qu correlation (entanglement)
- Correlation takes no time (pre-arranged)
- Communication with light speed
29Quantum teleportation
- Arbitrary state ??A a 0? b 1? in A
- Qubit ?B and ?A quantum correlated
- 0?A? 1?B - 1?A? 0?B (entangled)
- Measurement of ?A ?A? result i
1,2,3,4 - Communicating the measurement result i to B
- Unitary transformation ?B ? Ui ?B
- ? ??A teleported Ui ?B ? ?B a 0? b 1?
30Bells theorem
- EPR effect
- Local realism
- Bells inequality
- Aspects experiment
31EPR effect
S0
S1/2
S1/2
- Maximal entanglement
- ?? ?? - ?? ?? A?1 A-?2 - A-?1 A ?2
- anticorrelation of spin projections
- ? Correlation of projections on different axes
32Local realism
- Anticorrelation A?1 A-?2 - A-?1 A ?2
- Assumtion of local realism means
- If A-?2 , then really A?1
- If A ?2 , then really A-?1
- Then measurement is interpreted as
- Am?1 Bn ?2 ? Am?1 B-n ?1 (same particle)
33Bell inequality
- Given P(A B C) for a single particle
- and local realism
- From probability sum rule
- P(A- B) P(A- B C) P(A- B C-)
- P(A C-) P(A B C-) P(A B- C-)
- P(B C-) P(A B C-) P(A- B C-)
- Bell inequality P(A- B) P(A C-) ? P(B C-)
34Realism refuted
- Local realism ?? Bell inequality
- Aspect Bell inequality is violated
- ? No local realism in Qu Mechanics
- Properties found in a measurement
- do not exist before the measurement
35Conceptual problems
- Paradoxes Schroedinger cat etc.
- No reality previous to measurement
- Linear evolution
- c1a1??0?c2a2??0? ? c1a1??1?c2a2??2?
- ? reduction impossible
36Everett interpretation
- Linear evolution
- c1a1??0?c2a2??0? ? c1a1??1?c2a2??2?
- Many classical realities (many worlds)
- Selection consciousness
37Quantum consciousness
- Qu world many classical realities
- Consciousness Selection
- Consciousness selection of a class. reality
- Unconsciousness all class. realities
- qu world
- At the edge of consciousness (trance)
- Choice of reality (modification of
probabilities) - Contact with the quantum world (other
realities)
38Conclusion
- Physics of measurements entanglement
- Open systems continuously measured ones
- Entanglement ?? Quantum informatics
- Conceptual problems no selection in QM
- Everett Selection consciousness
- Quantum consciousness choice of reality etc.
39??????
- M.M., ????????? ???????? ? ????????????, ??????,
?????????, 2001 - translated from English (Quantum
Measurements and Decoherence, Kluwer, Dordrecht
etc., 2000) - M.M., ?????????? ? ???????????? ????????? ??????,
- ??? 173, 1199 (2003) Physics-Uspekhi 46, 1163
(2003) - M.M., ??????? ???????? ? ????????? ?????????
????????, ??? 175, 413 (2005) Physics-Uspekhi
175 (2005)
40Reviews
- M.M., Quantum Measurements and Decoherence.
- Kluwer, Dordrecht etc., 2000
- Russian translation ??????, ?????????,
2001 - M.M., Dissipation and decoherence of quantum
systems, ??? 173, 1199 (2003) Physics-Uspekhi
46, 1163 (2003) - M.M., Conception of consciousness in the context
of quantum mechanics, ??? 175, 413 (2005)
Physics-Uspekhi 175 (2005) -
41Conceptual problems of QuantumMechanics
- M.M., Quantum mechanics New experiments, new
applications and new formulations of old
questions, - Physics-Uspekhi 43, 585-600 (2000).
- Russian ?.?., ??? 170, 631 (2000)
- ?.?., Conception of consciousness in the context
of quantum mechanics, - Physics-Uspekhi 175, No.4 (2005)
- Russian ?.?., 175, 413 (2005)
42Sections of the Talk
- Introduction
- Op en systems and continuous measurements
- Restricted Path Integrals (RPI)
- Non-minimally disturbing monitoring
- Realization by a series of soft observations
- Conclusion and reviews