Cosmic Jets - PowerPoint PPT Presentation

About This Presentation
Title:

Cosmic Jets

Description:

Jet simulations and sources. Relativistic leptonic and hadronic ... SNs/SNRs: blast wave shock. Jet morphology. Jet simulation. M. Krause, LSW HD. t = 1.64 Myr ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 41
Provided by: Mll6
Category:
Tags: blastwave | cosmic | jets

less

Transcript and Presenter's Notes

Title: Cosmic Jets


1
Cosmic Jets
  • as sources for high-energetic

Neutrinos
Andreas Müller http//www.lsw.uni-heidelberg.de/
amueller/
Theoriegruppe Prof. Camenzind Landessternwarte
Königstuhl, Heidelberg
12. 12. 2002
2
Overview
  • Motivation
  • The AGN paradigm
  • Jet physics
  • Formation, collimation, morphology
  • Particle acceleration
  • Jet simulations and sources
  • Relativistic leptonic and hadronic Jets
  • Ultra-relativistic GRB Jets
  • Cosmic Rays
  • Proton Blazars
  • AGN neutrino flux
  • Microquasars
  • Microquasar neutrino fluxes
  • Implications of UHE neutrino astronomy
  • Surprise!

3
Motivation
hadrons
neutrinos
4
Cosmic neutrino sources
  • Galactic sources
  • Sgr A
  • SN
  • SNRs
  • Microquasars
  • Extragalactic sources
  • GRBs
  • GRBRs
  • AGN Jets
  • constraint AMANDA threshold 50 GeV

5
(No Transcript)
6
AGN type 1 multi-wavelength spectrum
3 bumps
7
AGN taxonomy
Type Host Variability Spectrum Jets Sources
Quasar all days Optical point source, dichotomy in radio loud and radio quiet, emission lines, IR-, UV-excess, hard Xg strong 3C 273, 3C 48, SDSS 10300524 (z 6.28)
Blazar ( BQ) Elliptical days double-humped (SSA), Xg to TeV (IC of UV), highest Lg, small inc, superluminal jets, compact radio core strong Mrk 501, Mrk 421, 1219285, 3C 279, H1426428
BL Lac Elliptical days Optical variable, high Lb, no em./abs. lines, strong in radio, max. in LIR no BL Lac, PKS 2155-304
Radio Galaxy Elliptical months Strong radio, core flat jet, lobe and hot spots steep strong Cyg A, M87, M82, 3C 219
Seyfert Galaxy Spiral months Comptonized continuum, warm abs., em. lines, reflection bump weak NGC 1068, NGC 4151, MCG-6-30-15
LINER all yes narrow emission lines, O, S, N lines yes NGC 4258
ULIRG merging of all types yes High LIR and LX, Fe K complex, yes NGC 6240, IRAS 05189-2524
8
Kerr black hole topology
9
Jet formation - theory
  • Kerr black hole vital
  • frame dragging in ergosphere
  • ergospheric dynamo
  • creates and sustains toroidal magnetic
  • flux and currents
  • extraction of rotational energy of Kerr hole
  • outgoing wind driven by MHD Alfvén waves
  • reconnection plasma decouples from magnetic
    field as approaching to horizon
  • (restatement of No-Hair theorem)
  • magnetized accretion disk energy of accreting
    plasma powers the wind

(B. Punsly, BH GHM, Springer 2001)
10
(No Transcript)
11
Jet formation - simulation
log(r) from 0.1 to 100 color-coded, arrows
velocity, solid line magnetic field parameters
a 0.95, t 65 rS, vJet 0.93c, g 2.7
(Koide et al., 2001)
12
MHD-Jet collimation and acceleration
13
Particle acceleration
  • Lorentz forces and gas pressure in Jets
  • Fermi acceleration
  • 1st order
  • relativistic shock waves propagate through
    turbulent plasma accelerating charged particles
  • 2nd order
  • stochastical acceleration of particles when
    diffusing through turbulent plasma
  • macroscopic kinetic energy of plasma transfered
    to few charged particles!
  • shock fronts
  • Jets internal shocks, bow shock
  • GRBs fireball shock
  • SNs/SNRs blast wave shock

(ApJS 141, 195-209, 2002, Albuquerque et al.)
14
Jet morphology
15
Jet simulation
cocoon shocked ext. medium bow shock
r
t 1.64 Myr
M. Krause, LSW HD
16
Jet emission knots
periodic bright knots associated with inner
shocks (rarefaction compression) complete
linear size 159 kpc z
1.112
17
Radio Jet Cyg A
VLA
jet and counter-jet, core, hot spots,
lobes Synchrotron emission in radio from
relativistic e- false color image red is
brightest radio, blue fainter. D 200 Mpc
18
X-ray Jet Cyg A
Chandra
X-ray cavity formed by powerful jets hot spots
clearly visible in 100 kpc distance away from
core surrounding is hot cluster gas T 107 to
108 K resulting topology prolate/cigar-shaped
cavity
19
Relativistic hadronic and leptonic Jets
  • 3 models
  • BC baryonic cold
  • LC leptonic cold
  • LH leptonic hot
  • leptonic species e-e (rel.)
  • hadronic species p, He (th.)
  • Relativistic Hydrodynamics
  • (RHD) in 2D
  • NEC SX-5 Supercomputer
  • jet kinetic power
  • 1044 to 1047 erg/s
  • typical lifetime 10 Myr
  • surprisingly similar
  • dynamic and morphology!

log(r)
(Scheck et al., 2002)
20
Relativistic hadronic and leptonic Jets
lowest G
highest G
Lorentz factor G after 6.3 Myr
(Scheck et al., 2002)
21
Relativistic GRB-Jet
  • 1.8 s after explosion
  • 10 a v 0.995c
  • axis unit 100 000 km
  • contour
  • vr gt 0.3c
  • eint gt 0.05 e0
  • Jet
  • 8 opening angle
  • Jet core
  • 99.97 c

G
outer stellar atmosphere
stellar surface
M.A. Aloy, E. Müller MPA Garching
22
Cosmic Rays
  • ultra high-energy CR 1019 eV lt E lt 1020 eV
  • 1st reported by Flys Eye, AGASA air shower
    detectors
  • CR sources homogeneous distributed and
    cosmological
  • candidates GRBs (cp. BATSE _at_ CGRO)
  • AGN Jets photo-produced p0 decay to gg
  • CR sources generate UHE protons
  • each has power-law differential proton spectrum
  • dN/dE E-a
  • spectrum insensitive to source evolution with z
    and
  • cosmological parameters (H0)
  • observable constraint 1.8 lt a lt 2.8
  • often assumed a 2.0
  • neutrinos overtake a-value if secondary from p-p
    reaction!
  • in p-g reactions weighting with photon power law
  • WB limit neutrino flux limited by parental
    proton energy!

(ApJ 425, L1-L4, 1995, Waxman Waxman Bahcall,
1999, 2001)
23
CR spectrum
ECR gt 1017 eV
(astro-ph/0011524, Gaisser)
24
Proton Jet reactions
25
Proton blazar model
  • non-conservative approach! (alternative to IC
    of accretion disk thermal UV emission on
    accelerated electrons)
  • proton acceleration in most powerful AGN Jets
  • power law distribution np(Ep)Ep-s
  • protons hit
  • p-target yields n Qppn(En) En-s neutrino
    production rate
  • g-target yields
  • CMB Greisen-Zatsepin-Kuzmin cut-off (1966)
  • Ep lt 1019 eV intergalactic
    proton
  • Synchrotron spectrum with ng(Eg) Eg-a
  • Qpgn(En) En-(s-a)
  • protons undergo unsaturated synchrotron
    cascades and emit Xg, electrons synchrotron
    contributions
  • drastic steepening of cascade spectrum above
  • Eg 100 GeV absorption of Xg by host galaxy
  • IR-photons from dust
  • BUT neutrinos not dampend!

(astro-ph/9306005, 9502085, 0202074, Mannheim)
26
Proton blazar 1218258
Data NED Montigny et al. 1994 Fink et
al. Whipple group
  • fit parameters
  • q 7
  • gjet 5
  • gp 2 x 109
  • d 7
  • B 4 G

(astro-ph/9502085, Mannheim)
27
Quasar 3C273 predicted neutrino flux
  • nm fluxes
  • compared with SNRs and Coma galaxy cluster
  • n oscillations neglected!

(astro-ph/0202074, Hettlage Mannheim)
28
Microquasars
Chandra homepage
29
MicroquasarCyg X-3
  • discovery in 1967 (Giacconi et al.)
  • companion massive Wolf-Rayet as can be
    observed
  • from wind in I- and K-band (van Kerkwijk et al.,
    1992)
  • orbital period 4.8 h derived from IR and X-ray
    flux modulation via eclipses (Parsignault et al,
    1972
  • Mason et al., 1986)
  • TeV source!
  • optical observation possible (extinction in
    Galactic plane)
  • CO nature
  • NS of 1 M8 with 10-7 M8/yr and WR with 15 M8
  • (Heuvel de Loore, 1973)
  • vs.
  • stellar BH with WR of 2.5 M8
  • (Vanbeveren et al., 1998 McCollough, 1999)
  • 1st only one-sided jet (Mioduszewski et al.,
    1998)

30
MicroquasarCyg X-3
  • evolution sequence of
  • bipolar radio jet
  • binary system
  • Wolf-Rayet and NS/BH
  • D 10 kpc
  • q 14
  • b 0.81
  • (Mioduszewski et al., 2001)

VLBA
31
MicroquasarGRS1915105
  • evolution sequence of
  • one-sided radio blob
  • binary system
  • normal star and BH
  • GBHC MBH 14 M8
  • D 12.5 kpc
  • q 70
  • b 0.92!
  • (Mirabel Rodriguez, 1994)

VLA
32
SS 433 - data
  • most enigmatic and still unique object in the
    sky!
  • CO neutron star or black hole?
  • companion OB star with 20 M8
  • mass loss rate 10-4 M8/yr (wind)
  • orbital period 13.1 d
  • persistent source
  • 1977 discovered, constellation Eagle
  • d 3 kpc
  • i 79
  • b 0.26 (nearly const!)
  • no continuous jet bullets
  • slow wobbling period 164 d
  • surrounded by diffuse nebular W50 (possible SNR)
  • jet strong, variable Ha line emission
  • emission lines doubled
  • estimated Ljet 1039 erg/s

(ApJ 575, 378-383, 2002, Distefano, Guetta,
Waxman Levinson)
33
SS 433
20 cm
SNR W50A
34
(No Transcript)
35
SS 433 in X-rays
T 5 x 107 K d 5 x 1018 km
Chandra homepage 11.12. 2002
36
SS 433 - theory
  • bullet ejection model
  • timescale non-steady shocks in sub-Keplerian
    accretion flow
  • bullet shooting interval 50-1000 s
  • donor matter rejection by centrifugal force
  • radiation pressure supported Keplerian disk
  • 15 to 20 of accreted matter is outflow
  • mean outflow rate 1018 g/s
  • mean accumulated bullet mass 1019 - 1021 g
    (moon 1021 g)
  • bullet formation by shock oscillations due to
    inherent
  • unsteady accretion solutions

(astro-ph/0208148, Chakrabarti et al.)
37
Microquasars - parameters
Sn
Ljet
i
G
  • all jets resolved in radio (280 known XRBs, 50
    radio-loud)
  • SS 433 not present more complicated model

(ApJ 575, 378-383, 2002, Distefano, Guetta,
Waxman Levinson)
38
Microquasars m event predictions
pulse
periodic
strong
persistent 1 yr integration time Dt
(ApJ 575, 378-383, 2002, Distefano, Guetta,
Waxman Levinson)
39
Implications of UHE neutrino astronomy
  • determination of two-component jet plasma
  • fixing the ratio of leptonic to hadronic
    species
  • Detection of n emitted by AGN would be a
    smoking gun for hadron acceleration. (Hettlage
    Mannheim)
  • deeper insight in Jet physics generally
  • better understanding of microquasar physics
  • detection of low-inclined radio-hidden
    microquasars
  • verification of neutrino oscillations on
    cosmological scales
  • clarification of neutrinos as Majorana
    particles
  • CR mapping
  • new issues for the origin of UHE cosmic rays

40
Most distant AGN
Chandra
SDSS quasars in 13 billion lightyears
distance emission starts as Universe was 1
billion years old! MBH 1010 M8
(Brandt et al., 2002)
Write a Comment
User Comments (0)
About PowerShow.com