South%20Dakota%20%20School%20of%20Mines%20 - PowerPoint PPT Presentation

About This Presentation
Title:

South%20Dakota%20%20School%20of%20Mines%20

Description:

Chi-square. F-distribution. Maxwell. Raleigh. Triangular ... Let X = lifetime of a machine where the life is governed by the exponential distribution. ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 48
Provided by: ske77
Category:

less

Transcript and Presenter's Notes

Title: South%20Dakota%20%20School%20of%20Mines%20


1
South Dakota School of Mines Technology
Introduction to Probability Statistics
2
Exam III
  • 99
  • 97
  • 95
  • 93
  • 90
  • 87
  • 86
  • 85
  • 83
  • 82,82
  • 80
  • Average 88.25

3
Introduction to Probability StatisticsRandom
Variables
4
Random Variables
  • A Random Variable is a function that associates a
    real number with each element in a sample space.
  • Ex Toss of a die
  • X dots on top face of die
  • 1, 2, 3, 4, 5, 6

5
Random Variables
  • A Random Variable is a function that associates a
    real number with each element in a sample space.
  • Ex Flip of a coin
  • 0 , heads
  • X
  • 1 , tails

?
6
Random Variables
  • A Random Variable is a function that associates a
    real number with each element in a sample space.
  • Ex Flip 3 coins
  • 0 if TTT
  • X 1 if HTT, THT, TTH
  • 2 if HHT, HTH, THH
  • 3 if HHH

?
7
Random Variables
  • A Random Variable is a function that associates a
    real number with each element in a sample space.
  • Ex X lifetime of a light bulb
  • X 0, ?)

8
Distributions
  • Let X number of dots on top face of a die
    when thrown
  • p(x) ProbXx

9
Cumulative
  • Let F(x) PrX lt x

10
Complementary Cumulative
  • Let F(x) 1 - F(x) PrX gt x

11
Discrete Univariate
  • Binomial
  • Discrete Uniform (Die)
  • Hypergeometric
  • Poisson
  • Bernoulli
  • Geometric
  • Negative Binomial

12
Binomial Distribution
n5, p.3
n8, p.5
n20, p.5
n4, p.8
x
13
Binomial Measures
  • Mean
  • Variance

?
?
?
xp
x
(
)
np
x
np(1-p)
14
Continuous Distribution
f(x)
A
x
a b c
d
  • 1. f(x) gt 0 , all x
  • 2.
  • 3. P(A) Pra lt x lt b
  • 4. PrXa

15
Continuous Univariate
  • Beta
  • T-distribution
  • Chi-square
  • F-distribution
  • Maxwell
  • Raleigh
  • Triangular
  • Generalized Gamma
  • H-function
  • Normal
  • Uniform
  • Exponential
  • Weibull
  • LogNormal

16
Normal Distribution
65
95
99.7
17
Std. Normal Transformation
f(z)
Standard Normal
N(0,1)
18
Example
  • Suppose a resistor has specifications of 100 10
    ohms. R actual resistance of a resistor and R
    N(100,5). What is the probability a
    resistor taken at random is out of spec?


19
Example Cont.
Prin spec Pr90 lt x lt 110
Pr(-2 lt z lt 2)
20
Example Cont.
Prin spec
Pr(-2 lt z lt 2) F(2) - F(-2) (.9773 -
.0228) .9545
21
Example Cont.
Prin spec
Pr(-2 lt z lt 2) F(2) - F(-2) (.9773 -
.0228) .9545
Prout of spec 1 - Prin spec 1 -
.9545 0.0455
22
Exponential Distribution
?1
23
Exponential Distribution
?1
?2
24
Example
  • Let X lifetime of a machine where the life is
    governed by the exponential distribution.
    determine the probability that the machine fails
    within a given time period a.
  • , x gt 0, ? gt 0

25
Example
Exponential Life
2.0
1.8
1.6
1.4
1.2
f(x)
Density
1.0
0.8
0.6
0.4
0.2
0.0
0
0.5
1
1.5
2
2.5
3
a
Time to Fail
26
Example
Exponential Life
2.0
1.8
1.6
1.4
1.2
f(x)
Density
1.0
0.8
0.6
0.4
0.2
0.0
0
0.5
1
1.5
2
2.5
3
a
Time to Fail
27
Example
Note F(?) 1-e-?? 1 F(0) 1 - e-?0 0
28
Complementary
Exponential Life
  • Suppose we wish to know the probability that the
    machine will last at least a hrs?

2.0
1.8
1.6
1.4
1.2
f(x)
Density
1.0
0.8
0.6
0.4
0.2
0.0
0
0.5
1
1.5
2
2.5
3
a
Time to Fail
?
29
Example
  • Suppose for the same exponential distribution, we
    know the probability that the machine will last
    at least a more hrs given that it has already
    lasted c hrs.

a
c
ca
PrX gt a c X gt c PrX gt a c ? X gt c /
PrX gt c PrX gt a c / PrX gt c
30
Introduction to Probability StatisticsExpecta
tions
31
Expectations
  • Mean

32
Example
Consider the discrete uniform die example
  • ?? EX 1(1/6) 2(1/6) 3(1/6)
  • 4(1/6) 5(1/6) 6(1/6)
  • 3.5

33
Variance
34
Example
  • Consider the discrete uniform die example

?2 E(X-?)2 (1-3.5)2(1/6) (2-3.5)2(1/6)
(3-3.5)2(1/6) (4-3.5)2(1/6) (5-3.5)2(1/6)
(6-3.5)2(1/6) 2.92
35
Property
36
Property
37
Property
38
Example
  • Consider the discrete uniform die example

?2 EX2 - ?2 12(1/6) 22(1/6) 32(1/6)
42(1/6) 52(1/6) 62(1/6) - 3.52
91/6 - 3.52 2.92
39
Exponential Example
For a product governed by an exponential life
distribution, the expected life of the product
is given by
2.0
1.8
1.6
1.4
1.2
?
x
?
f
t )
e
(x
?
?
1.0
Density
0.8
0.6
0.4
0.2
X
0.0
0
0.5
1
1.5
2
2.5
3
0.5
1
1/?
40
Properties of Expectations
  • 1. Ec c
  • 2. EaX b aEX b
  • 3. ?2(ax b) a2?2
  • 4. Eg(x)
  • g(x) Eg(x)
  • X
  • (x-?)2
  • e-tx

41
Properties of Expectations
  • 1. Ec c
  • 2. EaX b aEX b
  • 3. ?2(ax b) a2?2
  • 4. Eg(x)
  • g(x) Eg(x)
  • X ?
  • (x-?)2 ?2
  • e-tx ?(t)

42
Class Problem
  • Total monthly production costs for a casting
    foundry are given by
  • TC 100,000 50X
  • where X is the number of castings made during a
    particular month. Past data indicates that X is
    a random variable which is governed by the normal
    distribution with mean 10,000 and variance 500.
    What is the distribution governing Total Cost?

43
Class Problem
  • Soln
  • TC 100,000 50X
  • is a linear transformation on a normal
  • TC Normal(mTC, s2TC)

44
Class Problem
  • Using property Eaxb aExb
  • mTC E100,000 50X
  • 100,000 50EX
  • 100,000 50(10,000)
  • 600,000

45
Class Problem
  • Using property s2(axb) a2s2(x)
  • s2TC s2(100,000 50X)
  • 502 s2(X)
  • 502 (500)
  • 1,250,000

46
Class Problem
  • TC 100,000 50 X
  • but,
  • X N(100,000 , 500)
  • TC N(600,000 , 1,250,000)
  • N(600000 , 1118)

47
Introduction to Probability StatisticsJoint
Expectations
48
Properties of Expectations
  • Recall that
  • 1. Ec c
  • 2. EaX b aEX b
  • 3. ?2(ax b) a2?2
  • 4. Eg(x)

49
Joint Expectation
  • Let Z X Y
  • EZ EX EY

50
Joint Expectation
  • Let Z X Y
  • EZ EX EY
  • For X, Y independent, cov(x,y) 0

51
In General
  • In general, for Z the sum of n independent
    variables, Z X1 X2 X3 . . . Xn

52
Class Problem
  • Suppose n customers enter a store. The ith
    customer spends some Xi amount. Past data
    indicates that Xi is a uniform random variable
    with mean 100 and standard deviation 5.
    Determine the mean and variance for the total
    revenue for 5 customers.

53
Class Problem
  • Total Revenue is given by
  • TR X1 X2 X3 X4 X5

54
Class Problem
  • Total Revenue is given by
  • TR X1 X2 X3 X4 X5
  • Using the property EZ EX EY,
  • ETR EX1 EX2 EX3 EX4 EX5

55
Class Problem
  • Total Revenue is given by
  • TR X1 X2 X3 X4 X5
  • Using the property EZ EX EY,
  • ETR EX1 EX2 EX3 EX4 EX5
  • 100 100 100 100 100
  • 500

56
Class Problem
  • TR X1 X2 X3 X4 X5
  • Use the property s2(Z) s2(X) s2(Y).
  • Assuming Xi, i 1, 2, 3, 4, 5 all independent
  • s2(TR) s2(X1) s2(X2) s2(X3) s2(X4)
    s2(X5)

57
Class Problem
  • TR X1 X2 X3 X4 X5
  • Use the property s2(Z) s2(X) s2(Y).
  • Assuming Xi, i 1, 2, 3, 4, 5 all independent
  • s2(TR) s2(X1) s2(X2) s2(X3) s2(X4)
    s2(X5)

58
Class Problem
  • TR X1 X2 X3 X4 X5
  • Use the property s2(Z) s2(X) s2(Y).
  • Assuming Xi, i 1, 2, 3, 4, 5 all independent
  • s2(TR) s2(X1) s2(X2) s2(X3) s2(X4)
    s2(X5)
  • 52 52 52 52 52
  • 125

59
Class Problem
  • TR X1 X2 X3 X4 X5
  • Xi , independent with mean 100 and standard
    deviation 5
  • ETR 500
  • s2(TR) 125
Write a Comment
User Comments (0)
About PowerShow.com