Title: South%20Dakota%20%20School%20of%20Mines%20
1South Dakota School of Mines Technology
Introduction to Probability Statistics
2Exam III
- 99
- 97
- 95
- 93
- 90
- 87
- 86
- 85
- 83
- 82,82
- 80
- Average 88.25
3Introduction to Probability StatisticsRandom
Variables
4Random Variables
- A Random Variable is a function that associates a
real number with each element in a sample space. - Ex Toss of a die
- X dots on top face of die
- 1, 2, 3, 4, 5, 6
5Random Variables
- A Random Variable is a function that associates a
real number with each element in a sample space. - Ex Flip of a coin
- 0 , heads
- X
- 1 , tails
?
6Random Variables
- A Random Variable is a function that associates a
real number with each element in a sample space. - Ex Flip 3 coins
- 0 if TTT
- X 1 if HTT, THT, TTH
- 2 if HHT, HTH, THH
- 3 if HHH
?
7Random Variables
- A Random Variable is a function that associates a
real number with each element in a sample space. - Ex X lifetime of a light bulb
- X 0, ?)
8Distributions
- Let X number of dots on top face of a die
when thrown - p(x) ProbXx
9Cumulative
10Complementary Cumulative
- Let F(x) 1 - F(x) PrX gt x
11Discrete Univariate
- Binomial
- Discrete Uniform (Die)
- Hypergeometric
- Poisson
- Bernoulli
- Geometric
- Negative Binomial
12Binomial Distribution
n5, p.3
n8, p.5
n20, p.5
n4, p.8
x
13Binomial Measures
?
?
?
xp
x
(
)
np
x
np(1-p)
14Continuous Distribution
f(x)
A
x
a b c
d
- 1. f(x) gt 0 , all x
- 2.
- 3. P(A) Pra lt x lt b
- 4. PrXa
15Continuous Univariate
- Beta
- T-distribution
- Chi-square
- F-distribution
- Maxwell
- Raleigh
- Triangular
- Generalized Gamma
- H-function
- Normal
- Uniform
- Exponential
- Weibull
- LogNormal
16Normal Distribution
65
95
99.7
17Std. Normal Transformation
f(z)
Standard Normal
N(0,1)
18Example
- Suppose a resistor has specifications of 100 10
ohms. R actual resistance of a resistor and R
N(100,5). What is the probability a
resistor taken at random is out of spec?
19Example Cont.
Prin spec Pr90 lt x lt 110
Pr(-2 lt z lt 2)
20Example Cont.
Prin spec
Pr(-2 lt z lt 2) F(2) - F(-2) (.9773 -
.0228) .9545
21Example Cont.
Prin spec
Pr(-2 lt z lt 2) F(2) - F(-2) (.9773 -
.0228) .9545
Prout of spec 1 - Prin spec 1 -
.9545 0.0455
22Exponential Distribution
?1
23Exponential Distribution
?1
?2
24Example
- Let X lifetime of a machine where the life is
governed by the exponential distribution.
determine the probability that the machine fails
within a given time period a. - , x gt 0, ? gt 0
-
25Example
Exponential Life
2.0
1.8
1.6
1.4
1.2
f(x)
Density
1.0
0.8
0.6
0.4
0.2
0.0
0
0.5
1
1.5
2
2.5
3
a
Time to Fail
26Example
Exponential Life
2.0
1.8
1.6
1.4
1.2
f(x)
Density
1.0
0.8
0.6
0.4
0.2
0.0
0
0.5
1
1.5
2
2.5
3
a
Time to Fail
27Example
Note F(?) 1-e-?? 1 F(0) 1 - e-?0 0
28Complementary
Exponential Life
- Suppose we wish to know the probability that the
machine will last at least a hrs?
2.0
1.8
1.6
1.4
1.2
f(x)
Density
1.0
0.8
0.6
0.4
0.2
0.0
0
0.5
1
1.5
2
2.5
3
a
Time to Fail
?
29Example
- Suppose for the same exponential distribution, we
know the probability that the machine will last
at least a more hrs given that it has already
lasted c hrs.
a
c
ca
PrX gt a c X gt c PrX gt a c ? X gt c /
PrX gt c PrX gt a c / PrX gt c
30Introduction to Probability StatisticsExpecta
tions
31Expectations
32Example
Consider the discrete uniform die example
- ?? EX 1(1/6) 2(1/6) 3(1/6)
- 4(1/6) 5(1/6) 6(1/6)
- 3.5
33Variance
34Example
- Consider the discrete uniform die example
?2 E(X-?)2 (1-3.5)2(1/6) (2-3.5)2(1/6)
(3-3.5)2(1/6) (4-3.5)2(1/6) (5-3.5)2(1/6)
(6-3.5)2(1/6) 2.92
35Property
36Property
37Property
38Example
- Consider the discrete uniform die example
?2 EX2 - ?2 12(1/6) 22(1/6) 32(1/6)
42(1/6) 52(1/6) 62(1/6) - 3.52
91/6 - 3.52 2.92
39Exponential Example
For a product governed by an exponential life
distribution, the expected life of the product
is given by
2.0
1.8
1.6
1.4
1.2
?
x
?
f
t )
e
(x
?
?
1.0
Density
0.8
0.6
0.4
0.2
X
0.0
0
0.5
1
1.5
2
2.5
3
0.5
1
1/?
40Properties of Expectations
- 1. Ec c
- 2. EaX b aEX b
- 3. ?2(ax b) a2?2
- 4. Eg(x)
- g(x) Eg(x)
- X
- (x-?)2
- e-tx
41Properties of Expectations
- 1. Ec c
- 2. EaX b aEX b
- 3. ?2(ax b) a2?2
- 4. Eg(x)
- g(x) Eg(x)
- X ?
- (x-?)2 ?2
- e-tx ?(t)
42Class Problem
- Total monthly production costs for a casting
foundry are given by - TC 100,000 50X
- where X is the number of castings made during a
particular month. Past data indicates that X is
a random variable which is governed by the normal
distribution with mean 10,000 and variance 500.
What is the distribution governing Total Cost?
43Class Problem
- Soln
- TC 100,000 50X
- is a linear transformation on a normal
- TC Normal(mTC, s2TC)
44Class Problem
- Using property Eaxb aExb
- mTC E100,000 50X
- 100,000 50EX
- 100,000 50(10,000)
- 600,000
45Class Problem
- Using property s2(axb) a2s2(x)
- s2TC s2(100,000 50X)
- 502 s2(X)
- 502 (500)
- 1,250,000
46Class Problem
- TC 100,000 50 X
- but,
- X N(100,000 , 500)
- TC N(600,000 , 1,250,000)
- N(600000 , 1118)
47Introduction to Probability StatisticsJoint
Expectations
48Properties of Expectations
- Recall that
- 1. Ec c
- 2. EaX b aEX b
- 3. ?2(ax b) a2?2
- 4. Eg(x)
49Joint Expectation
50Joint Expectation
- Let Z X Y
- EZ EX EY
- For X, Y independent, cov(x,y) 0
51In General
- In general, for Z the sum of n independent
variables, Z X1 X2 X3 . . . Xn
52Class Problem
- Suppose n customers enter a store. The ith
customer spends some Xi amount. Past data
indicates that Xi is a uniform random variable
with mean 100 and standard deviation 5.
Determine the mean and variance for the total
revenue for 5 customers.
53Class Problem
- Total Revenue is given by
- TR X1 X2 X3 X4 X5
54Class Problem
- Total Revenue is given by
- TR X1 X2 X3 X4 X5
- Using the property EZ EX EY,
- ETR EX1 EX2 EX3 EX4 EX5
55Class Problem
- Total Revenue is given by
- TR X1 X2 X3 X4 X5
- Using the property EZ EX EY,
- ETR EX1 EX2 EX3 EX4 EX5
- 100 100 100 100 100
- 500
56Class Problem
- TR X1 X2 X3 X4 X5
- Use the property s2(Z) s2(X) s2(Y).
- Assuming Xi, i 1, 2, 3, 4, 5 all independent
- s2(TR) s2(X1) s2(X2) s2(X3) s2(X4)
s2(X5)
57Class Problem
- TR X1 X2 X3 X4 X5
- Use the property s2(Z) s2(X) s2(Y).
- Assuming Xi, i 1, 2, 3, 4, 5 all independent
- s2(TR) s2(X1) s2(X2) s2(X3) s2(X4)
s2(X5)
58Class Problem
- TR X1 X2 X3 X4 X5
- Use the property s2(Z) s2(X) s2(Y).
- Assuming Xi, i 1, 2, 3, 4, 5 all independent
- s2(TR) s2(X1) s2(X2) s2(X3) s2(X4)
s2(X5) - 52 52 52 52 52
- 125
59Class Problem
- TR X1 X2 X3 X4 X5
- Xi , independent with mean 100 and standard
deviation 5 - ETR 500
- s2(TR) 125