Madonne Talk Tours University - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Madonne Talk Tours University

Description:

Radiogram orientation. letter (c) topic (vegetal) pattern (cross) Retrieval criterion ... Orientation radiograms for image retrieval: An alternative to segmentation. ... – PowerPoint PPT presentation

Number of Views:13
Avg rating:3.0/5.0
Slides: 22
Provided by: calypo
Category:

less

Transcript and Presenter's Notes

Title: Madonne Talk Tours University


1
A Fast System for Dropcap Image Retrieval
  • Mathieu Delalandre and Jean-Marc Ogier
  • L3i, La Rochelle University, France
  • mathieu.delalandre_at_univ-lr.fr

2
Short CV
3
Short CV
  • Personal Information
  • Mathieu Delalandre, 32 years old, Married
  • Academic Degrees
  • 1995-1998 Lic.Sc In Industrial Computing Rouen
    University, France
  • 1998-2001 M.Sc in Computer Science Rouen
    University, France
  • Research Experiences (5 years, Graphics
    Recognition)
  • 04/01-09/01 Master PSI Laboratory (Rouen,
    France)
  • 10/01-04/05 PhD PSI Laboratory (Rouen, France)
  • 05/05-09/05 Post-doc SCSIT (Nottingham,
    England)
  • 10/05-10/06 Post-doc L3i Laboratory (La
    Rochelle, France)
  • 11/06-12/06 Post-doc PSI Laboratory (Rouen,
    France)
  • 01/07-12/09 Post-doc CVC (Barcelone, Spain)

mais aussi des bandeaux, portraits, armoiries,
fleurons, marques
4
Introduction
  • - Old books
  • - Old graphics retrieval
  • - Our problem

5
IntroductionOld books
  • Old books
  • - Old graphics retrieval
  • Our problem
  • Old books of XV and XVI centuries
  • Samples
  • Example of digitized database
  • (BVH, CESR Tours)
  • Old Graphics

6
IntroductionOld graphics retrieval
  • Old books
  • - Old graphics retrieval
  • Our problem
  • System overview
  • General architecture
  • Samples

Pareti05 Graphics style Zip law
Uttama05 Document layout MST
  • Retrieval criterion

Baudrier05 Sub image Hausdorff distance
Bigun96 Stroke image Radiogram orientation
7
IntroductionOur problem (1/2)
  • Old books
  • - Old graphics retrieval
  • Our problem
  • Context
  • MAsse de DOnnées issues de la Numérisation du
    patrimoiNE (MADONNE) Project
  • Bibliothèques Virtuelles Humanistes (BVH)
  • du Centre dEtudes Supérieures de la Renaissance
    (CESR)
  • Wood Plug Tracking

8
IntroductionOur problem (2/2)
  • Old books
  • - Old graphics retrieval
  • Our problem
  • Problem features
  • No scaled, no oriented
  • Noise
  • Offset
  • Complexity
  • Accuracy
  • Scalability
  • Descriptor choice
  • To scalar Loncaric98
  • Hough, Radon, Zernike, Hu, Fourrier
  • Scaled and
  • orientation invariant
  • fast
  • local
  • To image Gesu99
  • Template matching, Hausdorff distance
  • no scaled and orientation invariant
  • global (scene)

9
Our system
10
Our systemFormatting
  • Digitalization problems Lawrence00
  • Problem sources
  • Several image providers
  • Several digitalization tools
  • Length of process
  • Human supervised
  • QUEID QUery Engine on Image Database
  • OLDB (Ornamental Letters Database)
  • Before (oldb.jpg)
  • After

11
Our systemCompression
  • Run based compression
  • Run Length Encoding (RLE)
  • Compression rate
  • OLDB results
  • Fixed threshold binarisation
  • Both RLE
  • RLE Types

12
Our systemCentering and comparison
  • Centering
  • OLDB results
  • Comparison

while x2 ? x1 handle image 2 while x1 ? x2
handle image 1
13
In progress
14
In progress
  • Our problem
  • Current time ? 40 s
  • Wished time lt 4 s
  • First system
  • Level 1 image sizes
  • Level 2 black, white pixels
  • Level 3 RLE comparison

To use a system approach
To use a lossless compression
  • Selection algorithm
  • Key idea

Speed
if ?1 - ?2 lt 0 push x, cluster while ?1 -
?2 lt 0 next
Depth
15
In progress
  • OLDB results
  • Run based signature
  • To decrease variability

To add a level
To work on selection
16
In progress
  • Query example
  • Performance evaluation
  • Criterion ?
  • Scalability
  • Accuracy
  • Time processing

Benchmark system
17
Conclusions and perspectives
18
Conclusions et perspectives
  • Conclusions
  • Dropcap image retrieval wood tracking
  • Formatting image database (QUEID)
  • Fast approach, two features
  • RLE comparison (?7 to ?9)
  • Top-down strategy (?2 to ?20)
  • Results ? 10 s for 2000 images (300 Mo)
  • Perspectives
  • Working on RLE signature
  • Benchmark system for performance evaluation

19
Bibliography
20
Bibliography
  • J. Bigun, S. Bhattacharjee, and S. Michel.
    Orientation radiograms for image retrieval An
    alternative to segmentation. In International
    Conference on Pattern Recognition (ICPR),
    volume 3, pages 346-350, 1996.
  • V. D. Gesu and V. Starovoitov. Distance based
    function for image comparison. Pattern
    Recognition Letters (PRL), 20(2)207-214, 1999.
  • S. Loncaric. A survey of shape analysis
    techniques. Pattern Recognition (PR),
    31(8)983-1001, 1998.
  • R. Pareti and N. Vincent. Global discrimination
    of graphics styles. In Workshop on Graphics
    Recognition (GREC), pages 120-128, 2005.
  • S. Uttama, M. Hammoud, C. Garrido, P. Franco, and
    J. Ogier. Ancient graphic documents
    characterization. In Workshop on Graphics
    Recognition (GREC), pages 97-105, 2005.
  • E. Baudrier, G. Millon, F. Nicolier, and S. Ruan.
    A fast binary-image comparison method with
    local-dissimilarity quantification. In
    International Conference on Pattern Recognition
    (ICPR), volume 3, pages 216- 219, 2006.

21
Thanks
Write a Comment
User Comments (0)
About PowerShow.com