Robocup Vision Tracking with Xetal Processor - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Robocup Vision Tracking with Xetal Processor

Description:

Edge and colour-based object detection. Sebastien Pierrot. Supervisors: Harry Broers (CFT) ... High-Speed Monochrome Processing. B/W camera. Fuga. Vision system (1) ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 25
Provided by: cos154
Category:

less

Transcript and Presenter's Notes

Title: Robocup Vision Tracking with Xetal Processor


1
Robocup Vision Tracking with Xetal Processor
Edge and colour-based object detection
Sebastien Pierrot
Supervisors Harry Broers (CFT),
Anteneh Abbo, Richard Kleihorst (NATLAB)
2
Outline
  • Introduction
  • Vision System
  • Object Tracking
  • Future Work

3
Introduction (1)
Robocup
4
Introduction (2)
Machine Vision
5
Outline
  • Introduction
  • Vision System
  • Robocup vision system
  • Xetal Architecture
  • Task division
  • Object Tracking
  • Future Work

6
Vision system (1)
Actual Robocup vision system
7
Vision system (2)
Xetal Architecture Block Schema
8
Vision system (3)
Repartition Tasks

9
Outline
  • Introduction
  • System Vision
  • Object Tracking
  • Color-based detection
  • Edge detection
  • Future Work

10
Color-based detection (1)
Object Tracking (1)
RGB
3-D RGB cube
11
Color-based detection (2)
Object Tracking (2)
YUV color space
Y Luminosity U,V Chromatic components
Y0.3R0.58G0.12B U0.17R-0.33G0.5B V0.5
R-0.42G0.08B
12
Object Tracking (3)
Color-based detection (3)
HSV color space
V Value S Saturation H Hue
V ( R G B )/3 S ( 1 - min(R,G,B)/ V ) H
0 (G-B)/? if max is R 1/3
(B-R)/? if max is G 2/3 (R-G)/? if
max is B ? is the (max-min) of the RGBs
13
Color-based detection (4)
Object Tracking (4)
HSI color space
I Intensity S Saturation H Hue
??/2 if GgtB ?3?/2 if GltB H1
if GB
14
Color-based detection (5)
Object Tracking (5)
V
  • Segmentation examples

U
Linear
S
Constant
H
15
Object Tracking (6)
Color-based detection (6)
Orange YUV segmentation
16
Object Tracking (7)
Color-based detection (7)
Orange HSI segmentation
17
Color-based detection (8)
Object Tracking (8)
  • Implementation discussion
  • HSV
  • 4 variable divisions
  • HSI
  • One variable division
  • Arc tangent function
  • Conclusion
  • YUV linear segmentation for quicker processing
  • HSI constant segmentation for tuning facility and
    better color density

18
Object Tracking (9)
Edge detection (1)
  • Goal
  • Strong intensity contrast detection
  • Divide the image into areas
  • corresponding to different objects
  • Reducing image informations
  • Computation
  • Estimated with the maximum of the 1st derivative
    or with the zero crossing of the 2nd derivative

19
Object Tracking (10)
Edge detection (2)
  • Sobel edge detector
  • Approximation absolute gradient magnitude at
    each point in an input grayscale image
  • ? a pair of 33 convolution kernels
  • Advantage Simple implementation
  • Drawback Sensible to the noise

20
Object Tracking (11)
Edge detection (3)
  • Canny edge detector
  • More sophisticated multi-stage process
  • Advantages
  • Simple thresholing
  • Lower sensibility to the noise
  • Large patterns 55,77
  • Drawbacks
  • Larger code program

21
Object Tracking (12)
Edge detection (4)
  • Example 77 pattern elaboration
  • Shifts
  • Sum of intermediate
  • Results
  • Gx/y(0) G(0)G(2)
  • Gx/y(1) G(1)G(3)

77 Kernel
G(2)
G(0)
22
Object Tracking (13)
Edge detection (5)
Sobel detector
Results
Canny detector
23
Outline
  • Introduction
  • System Vision
  • Object Tracking
  • Future Work
  • Edge detection tuning
  • Data compression

24
Compression
  • Goal Reducing space information
  • Proposed format
  • Features
  • Processor identification (PID)
  • Statistic information delivering from serial
    processor
  • Shifts for blank elimination
Write a Comment
User Comments (0)
About PowerShow.com