Title: Robocup Vision Tracking with Xetal Processor
1Robocup Vision Tracking with Xetal Processor
Edge and colour-based object detection
Sebastien Pierrot
Supervisors Harry Broers (CFT),
Anteneh Abbo, Richard Kleihorst (NATLAB)
2Outline
- Introduction
- Vision System
- Object Tracking
- Future Work
3Introduction (1)
Robocup
4Introduction (2)
Machine Vision
5Outline
- Introduction
- Vision System
- Robocup vision system
- Xetal Architecture
- Task division
- Object Tracking
- Future Work
6Vision system (1)
Actual Robocup vision system
7Vision system (2)
Xetal Architecture Block Schema
8Vision system (3)
Repartition Tasks
9Outline
- Introduction
- System Vision
- Object Tracking
- Color-based detection
- Edge detection
- Future Work
10Color-based detection (1)
Object Tracking (1)
RGB
3-D RGB cube
11Color-based detection (2)
Object Tracking (2)
YUV color space
Y Luminosity U,V Chromatic components
Y0.3R0.58G0.12B U0.17R-0.33G0.5B V0.5
R-0.42G0.08B
12Object Tracking (3)
Color-based detection (3)
HSV color space
V Value S Saturation H Hue
V ( R G B )/3 S ( 1 - min(R,G,B)/ V ) H
0 (G-B)/? if max is R 1/3
(B-R)/? if max is G 2/3 (R-G)/? if
max is B ? is the (max-min) of the RGBs
13Color-based detection (4)
Object Tracking (4)
HSI color space
I Intensity S Saturation H Hue
??/2 if GgtB ?3?/2 if GltB H1
if GB
14Color-based detection (5)
Object Tracking (5)
V
U
Linear
S
Constant
H
15Object Tracking (6)
Color-based detection (6)
Orange YUV segmentation
16Object Tracking (7)
Color-based detection (7)
Orange HSI segmentation
17Color-based detection (8)
Object Tracking (8)
- Implementation discussion
- HSV
- 4 variable divisions
- HSI
- One variable division
- Arc tangent function
- Conclusion
- YUV linear segmentation for quicker processing
- HSI constant segmentation for tuning facility and
better color density
18Object Tracking (9)
Edge detection (1)
- Goal
- Strong intensity contrast detection
- Divide the image into areas
- corresponding to different objects
- Reducing image informations
- Computation
- Estimated with the maximum of the 1st derivative
or with the zero crossing of the 2nd derivative
19Object Tracking (10)
Edge detection (2)
- Sobel edge detector
- Approximation absolute gradient magnitude at
each point in an input grayscale image - ? a pair of 33 convolution kernels
- Advantage Simple implementation
- Drawback Sensible to the noise
-
20Object Tracking (11)
Edge detection (3)
- Canny edge detector
- More sophisticated multi-stage process
- Advantages
- Simple thresholing
- Lower sensibility to the noise
- Large patterns 55,77
- Drawbacks
- Larger code program
21Object Tracking (12)
Edge detection (4)
- Example 77 pattern elaboration
- Shifts
- Sum of intermediate
- Results
- Gx/y(0) G(0)G(2)
- Gx/y(1) G(1)G(3)
77 Kernel
G(2)
G(0)
22Object Tracking (13)
Edge detection (5)
Sobel detector
Results
Canny detector
23Outline
- Introduction
- System Vision
- Object Tracking
- Future Work
- Edge detection tuning
- Data compression
24Compression
- Goal Reducing space information
- Proposed format
- Features
- Processor identification (PID)
- Statistic information delivering from serial
processor - Shifts for blank elimination