Title: StructuredIllumination Quantitative Phase Microscopy
1Structured-Illumination Quantitative Phase
Microscopy
Sri Rama Prasanna Pavani, Ariel Libertun, Sharon
King, and Carol Cogswell Micro Optical Imaging
Systems Laboratory University of Colorado at
Boulder http//moisl.colorado.edu
2 Phase Imaging - What?
- Transparent objects (phase objects) modulate only
the phase of light - Square law detectors do not detect phase
modulations - Convert phase modulations into detectable
intensity modulations
Bright field
3 Convert phase modulations into detectable
intensity modulations.
Phase imaging - How?
Digital Holography
Phase contrast
Diff. Interference Contrast
- Quantitative phase after reconstruction
- Thick phase objects
- Single image
- Vibration sensitive
- Phase wrapping
- Quantitative phase for weak phase objects
- No phase wrapping
- Halo and shading-off
- Only for thin objects
- Quantitative phase after reconstruction
- No phase wrapping
- Polarization sensitive
- Only for thin objects
- Multiple images
4Our method - Why?
- Quantitative phase imaging
Purpose
- Thick, partially absorbing samples
- Polarization insensitive
Applicability
- Single image
- Non-scanning (wide field)
- Non-Iterative
Speed
- Incoherent source
- Inexpensive
Miscellaneous
5Our method
- Amplitude mask in the field diaphragm
- Pattern is imaged on the sample
- Phase object distorts the pattern
- Record the distorted pattern
- Analytical formula calculates phase
Vs
0.2 0.1
(mm)
0.4 0.2
0 0.2 0.4
(mm)
(mm)
6Our method 1D
2D dot shift
1D dot shift
7Our method 1D
- Analytically relate deformation to the optical
path length - Consider a 1D phase object p(x)
- Ray R from point A, after refraction, appears as
if it originated from B - Deformation t(x) is the distance between A and B
Normal
Tangent
n2
p(x)
n1
A
B
t(x)
Pavani et al, Quantitative bright field phase
microscopy, to be sent to Applied Optics
8Our method 2D
1D deformations
After 1D integrations
Quantitative Phase
2D deformation
Pavani et al, Quantitative bright field phase
microscopy, to be sent to Applied Optics
9Simulation
X 100
18 9 0
5 0 -5
Calculated Phase
Quadratic phase
50 25 0
50 25 0
200 100
200 100
After 1D integrations
1D deformations
X 100
18 9 0
5 0 -5
0 100 200
0 100 200
Error
8 4 0 -4 -8
(nm)
Peak error is 5 orders less than peak phase
Error
0 100 200
10Experimental Results
X,Y Deformations
Dot shift
Original pattern
3 0 -3
360 180
0 240 480
Deformed pattern
3 0 -4
360 180
16.54
0 240 480
Quantitative phase
40 30 20 10 0
Object Drop of optical cement
360 180
480 240 0
11Experiment - Accuracy
Profilometer Our method
12Conclusion
- Quantitative phase imaging in a brightfield
microscope. - Phase is calculated from deformation using an
analytical formula. - Inexpensive non-scanning, non-iterative,
single-image technique.
13Acknowledgements
- Prof. Rafael Piestun
- Prof. Gregory Beylkin
- Vaibhav Khire
CDMOptics PhD Fellowship
National Science Foundation Grant No. 0455408
14References
- J. W. Goodman, Introduction to Fourier Optics,
(Roberts Company, 2005) - M Pluta, Advanced Light Microscopy, vol 2
Specialised Methods, (Elsevier, 1989) - M. R. Arnison, K. G. Larkin, C. J. R. Sheppard,
N. I. Smith, C. J. Cogswell, Linear phase
imaging using differential interference contrast
microscopy Journal of Microscopy 214 (1), 712
(2004) - C. Preza, "Rotational-diversity phase estimation
from differential-interference-contrast
microscopy images," J. Opt. Soc. Am. A 17,
415-424 (2000) - Sharon V. King, Ariel R. Libertun, Chrysanthe
Preza, and Carol J. Cogswell, Calibration of a
phase-shifting DIC microscope for quantitative
phase imaging, Proc. SPIE 6443, 64430M (2007) - E. Cuche, F. Bevilacqua, and C. Depeursinge,
Digital holography for quantitative
phase-contrast imaging, Opt. Lett. 24, 291-293
(1999) - P. Marquet, B. Rappaz, P. J. Magistretti, E.
Cuche, Y. Emery, T. Colomb, and C. Depeursinge,
Digital holographic microscopy a noninvasive
contrast imaging technique allowing quantitative
visualization of living cells with subwavelength
axial accuracy, Opt. Lett. 30, 468-470 (2005) - M. Born and E. Wolf, Principles of Optics, ed. 7,
(Cambridge University Press, Cambridge, U.K.,
1999). - A. C. Kak, M. Slaney, Principles of Computerized
Tomographic Imaging, (IEEE Press, New York, NY,
1988) - A. C. Sullivan, Department of Physics, University
of Colorado, Campus Box 390, Boulder, CO 80309,
USA and R. McLeod are preparing a manuscript to
be called Tomographic reconstruction of weak
index structures in volume photopolymers. - Huang D, Swanson EA, Lin CP, Schuman JS, Stinson
WG, Chang W, Hee MR, Flotte T, Gregory K,
Puliafito CA, et al., Optical coherence
tomography, Science1991 Nov 22254(5035)1178-81.
- A. F. Fercher, C. K. Hitzenberger, Optical
coherence tomography, Chapter 4 in Progress in
Optics 44, Elsevier Science B.V. (2002) - A. F. Fercher, W. Drexler, C. K. Hitzenberger and
T. Lasser, Optical coherence tomography -
principles and applications, Rep. Prog. Phys. 66
239303 (2003) - M. R. Ayres and R. R. McLeod, "Scanning
transmission microscopy using a
position-sensitive detector," Appl. Opt. 45,
8410-8418 (2006) - Barone-Nugent, E., Barty, A. Nugent, K.
Quantitative phase-amplitude microscopy I
optical microscopy, J. Microsc. 206, 194203
(2002). - J. Hartmann, "Bemerkungen uber den Bau und die
Justirung von Spektrographen," Z. Instrumentenkd.
20, 47 (1900). - I. Ghozeil, Hartmann and other screen tests, in
Optical Shop Testing, D. Malacara, second edition
Wiley, New York, 1992, pp. 367396. - R. V. Shack and B. C. Platt, Production and use
of a lenticular Hartmann screen, J. Opt. Soc.
Am. 61, 656 (1971). - V. Srinivasan, H. C. Liu, and M. Halioua,
Automated phase-measuring profilometry of 3-D
diffuse objects, Appl. Opt. 23, 3105- (1984)
15Applications and Future work
- Industrial inspection, biological imaging
- Extracting information from axial deformation
- Extending the depth of field of the system
- Fabrication of an amplitude mask with higher
spatial resolution
16Our method How?
1 Dimensional analysis
(from geometry)
(Snells law,
)
(Taylor expansion)
C 2 (C2 C1)
17Our method How?
M
2 Dimensional analysis
N
Apply 1D solution along x and y to obtain
and
P2