Title: Optical Interferometry
1Optical Interferometry
- Elliott Horch, University of Massachusetts
Dartmouth, USA
2Interferometry Tutorial
Aperture
Image
Spatial Frequency
A(w,z)
I(x,y)
ÃŽ(u,v)
z
y
w
x
(w,z)
(x,y)
(u,v)
3Fraunhofer Diffraction
- Image of a point source formed by a general
aperture is the modulus square of the Fourier
transform of the aperture. - Connects (w,z)-plane to (x,y)-plane.
- I(x,y) FT(A(w,z))2
4Baselines Van Cittert-Zernike Theorem
- Define a baseline (B). That baseline contributes
to 1 and only 1 Fourier component (b) of the
image. - Connects (w,z)-plane to (u,v)-plane.
z
v
A(w,z)
b
u
w
B
5Example 1 - Point Source, Two-aperture
Interferometer
(w,z)
(x,y)
(u,v)
6Aperture Synthesis
- Multiple-baseline interferometer.
- Sparcely fill (u,v)-plane.
- Reconstruct high-resolution images through
Fourier inversion.
(w,z)
(u,v)
7What does interferometry offer astronomers?
- High spatial resolution.
- High precision in position determinations.
- But, these are generally obtained at the cost of
sensitivity.
8Fundamental Astronomy
- Direct measures of stellar radii.
- Improved distances to stars through parallax
measures (direct measure) stellar
luminosities, fundamental distance ladder. - Resolution of close binaries/spectroscopic
binaries stellar masses. - Indirect imaging of extrasolar planets.
- Surface features on normal and YSOs, surface
eruptions? - More.
9Additional Interferometry Science
- Single Stars
- Limb Darkening
- Linear Diameters
- Star Formation Phenomena Dynamics
- Pre-Main Sequence Objects
- Absolute Rotation
- Flare Star Phenomena
- Cepheid P-L Calibration
- Mira Pulsations
- P-Mode Oscillations
- Hot Star Phenomena (shells, winds, etc.)
- Cool Star Shells
- Binary Multiple Stars
- Duplicity Surveys
- Close Binary Phenomena
- Star Clusters
- Proper Motions
- Duplicity Surveys
- Extragalactic
- Binaries in Magellanic Clouds
- AGN Structure
- Solar System
- Planetary Satellites
- Minor Planets Comets
- Solar Surface
- Extrasolar Planets
- Astrometric Detection
- Not Vulnerable to sin i
Courtesy of H. McAlister
10Optical Interferometry versus Radio Interferometry
- Why is optical interferometry a young field while
radio interferometry has been around a long time?
Radio l 1m T 3 x 10-9 s
Visible l 600nm T 2 x 10-15 s
Atmosphere disturbs The wavefronts.
11Overcoming Technological Challenges
- Nanometer-level control and stabilization of
optics. - Sub-nanometer sensing of optical element
positions. - Space instrument complexity and deployment.
12Simple Long-Baseline Interferometer
d1
d2
Courtesy of H. McAlister
13Basic math
Fields at two apertures from a monochromatic
point source
Up to normalization factors
Add in distances to get beams together
14Continued
Add fields at detector
No way!
This is easy, Right?
Finite Coherence Fringes die away as the
argument of cos grows. - finite aperture size -
non-monochromatic signal - etc.
15Optical Path Length Equalization
16Fringe Visibility
Michelson defined the quantity Visibility as
Imax
Imin V
.
Imax Imin This is the basic observable
for an interferometer.
For an excellent and detailed tutorial on
interferometry, see Principles of Long-Baseline
Stellar Interferometry, Proceedings of the 1999
Michelson Summer School (published by JPL and
edited by Peter Lawson), available at
olbin.jpl.nasa.gov/intro/
Courtesy of H. McAlister
17Effect of Increasing Angular Diameter a
a 0.50 mas
a 0.55 mas
a 0.75 mas
a 1.0 mas
a 1.5 mas
a 2.5 mas
a 5.0 mas
Visibility 2
Baseline (meters)
Courtesy of H. McAlister
18Effect of Increasing Binary Star Separation r
a1 a2 1.0 mas Dm 0
Visibility 2
Baseline (meters)
Courtesy of H. McAlister
19Effect of Increasing Binary Star Relative
Brightness
a1 a2 1.0 mas r 2.5 mas
Visibility 2
Baseline (meters)
Courtesy of H. McAlister
20Detected Signals
I1
I2
ltIAgt GAltI1R I2Tgt
ltIBgt GBltI1T I2Rgt
IA(x) 1 2V(I1I2)0.5rt / I1r2
I2t2 sinc(pDsx) cos(2psox f) IB(x) 1
2V(I1I2)0.5rt / I1t2 I2r2
sinc(pDsx) cos(2psox f)
Based on Benson et al. APPLIED OPTICS, 34, 51
1995.
Courtesy of H. McAlister
21Signal Processing I. Slice Pack Scans
Signal Level
IA200
IB
Milliseconds from Scan Start
Courtesy of H. McAlister
22Signal Processing II. Smooth with Low-Pass Filter
Signal Level
Milliseconds from Scan Start
Normalized Signal
Milliseconds from Scan Start
Courtesy of H. McAlister
23Signal Processing III. Subtract B from A for
Analysis
Signal
Milliseconds from Scan Start
Courtesy of H. McAlister
24Signal Processing IV. Locate Fringe Center in PS
Relative Power
Frequency
Courtesy of H. McAlister
25Signal Processing V. Apply High-Pass Filter
Courtesy of H. McAlister
26Signal Processing VI. Fit Fringe to Determine
Amplitude
Courtesy of H. McAlister
27Nearby Stars Currently Accessible to CHARA
From RECONS sample provided by T. Henry, H.
McAlister
6 4 2 0 -2
63 stars including 13 spectroscopic binaries 2
astrometric binaries 2 exoplanetary systems
GJ 880
Apparent K Magnitude
e Eri
Altair
Vega
Procyon
Sirius
A0 A5 F0 F5
G0 G5 K0 K5
M0 M5 Spectral Type
28Diameter Results for GJ 880 (d 6.88 pc, Sp
M1.5V, V 8.7, K 5.1)
Visibility
a 0.89/-0.04 mas (UD) D 0.66/-0.03 Dsun
Baseline (m)
Courtesy of H. McAlister
29M Dwarf Interferometric Diameters
PTI Lane et al. ApJ, 551, L81, 2001 VLTI
Segransan et al. AA, 397, L7, 2003 CHARA New
GJ 887
GJ 880
GJ 887
D / Dsun
GJ 411
GJ 15A
GJ 191
GJ 699
GJ 551
M0 M1 M2
M3 M4 M5
M6 Spectral Type
Courtesy of H. McAlister
30Check Star Visibilities Diameter Fit
HD 88547
Courtesy of H. McAlister
31CHARA Overview
- Located on Mt. Wilson, California
- Excellent Seeing Logistics
- Night Sky Brightness Irrelevant
- Y-shaped Array Configuration
- 331-meter Maximum Baseline
- Six 1.0-meter Collecting Telescopes
- Can Accommodate 2 More Telescopes
- Dual Operating Wavelength Regimes
- 470 - 800 nm (0.2 mas limiting resolution)
- 2.0 - 2.5 microns (1 mas limiting resolution)
- Science Emphasis on Fundamental Stellar
Parameters - Diameters, Teff, Masses, Luminosities
- Limb darkening, shapes, pulsations, etc.
Courtesy of H. McAlister
32CHARA Layout on Mt. Wilson
South Arm
West Arm
Shop
Beam Synthesis Facility
East Arm
Courtesy of H. McAlister