Traffic Estimation with Space-Based Data - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Traffic Estimation with Space-Based Data

Description:

High Resolution = Low orbits = Limited temporal sampling (dynamic traffic) ... Estimation from High-Resolution Satellite Imagery. Acknowledgments. P. Goel, Z. ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 33
Provided by: ursula5
Category:

less

Transcript and Presenter's Notes

Title: Traffic Estimation with Space-Based Data


1
Traffic Estimation withSpace-Based Data
  • Mark R. McCord
  • NCRST-F
  • The Ohio State University
  • Workshop on
  • Satellite Based Traffic Measurement
  • Berlin, Germany
  • 9-10 September 2002

2
Satellite Imagery forVehicle Identification
  • High Resolution Required
  • Cars 1m - 2m panchromatic
  • Trucks 4m panchromatic

3
  • High Resolution
  • gt Low orbits
  • gt Limited temporal sampling
  • (dynamic traffic)
  • gt Long time scale, geographically
    extensive applications
  • gt Traffic Monitoring
  • Average Annual Daily Traffic (AADT)
  • Vehicle Kilometers Traveled (VKT)

4
Improved AADT and VKTEstimation from
High-Resolution Satellite Imagery
  • Acknowledgments
  • P. Goel, Z. Jiang, B. Coifman,
  • Y. Yang,C. Merry, Past Students

5
National, Regional Network Coverage AADT and VKT
6
Average Annual Daily TrafficVehicle Kilometers
Traveled
  • AADT Traffic on a highway segment
  • AADTs ? S?1,365 V24s, ? / 365
  • V24s, ? ? 24-hour volume, segment s, day ?
  • VKT Travel over the network
  • (avg daily) VKT Ss1,S Lengths AADTs

7
Estimating AADT on System
  • (Permanent) Automatic Traffic Recorders
  • V24s, ?, ? 1, 2, , 365, ?s ? Spatr
  • 3 segments equipped with PATRs
  • gt Calculate AADTs ?s ? Spatr
  • gt Estimate temporal variability
  • (expansion factors)
  • e.g., EF(?) EFMDm(?),d(?), m(?) 1,2, , 12

  • d(?) 1, 2, , 7

8
Estimating AADT on System (cont.)
  • Moveable ATRs (Coverage Counts)
  • V24s, ?, V24s, ?1, ? ? 1, 2, ,
    364,?s?Smatr
  • 33 segments per year
  • gt Estimate AADTs ?s ? Smatr
  • AADTests fV24s, ?, V24s, ?1, EF(?),
    EF(?1)
  • e.g. AADTests V24s, ?/EF(?)V24s,?1/EF(?1)/2

9
Estimating AADT on System (cont.)
  • Unsampled Segments in Year, Suns
  • (S Spatr ? Smatr ? Suns)
  • AADTs ? Suns fAADTs, ?s ?
    Spatr?Smatr, ?s ? Suns
  • e.g. AADTs ? Suns AverageAADTs, ?s ?
    Spatr?Smatr
  • AADTs ? Suns fAADTs sampled in previous
    year, network growth factors

10
AccuracySampling, Estimation MethodologyCostLar
ge Labor and Equipment Expenses
11
Satellite Imagery
  • Potential
  • Added Data
  • Off-the-Road
  • Spatial Perspective
  • Access of Remote Areas
  • Difficulty
  • Unfamiliar (Density Based)
  • Potential Error (Short Interval
    Observation)

12

Original Image
Binary Image
13
  • Flowest(x,t?t) Density(x?x,t)Velocity(x?x,t)
  • Flowest(x,t?t) vph
  • ?t short (3-15 minutes)
  • V24,ests, ? fFlowest(x,t?t s,?), EFh(h(t))
  • e.g., V24,ests, ? 24Flowest(x,t?t s,?) /
    EFh(h(t))
  • EFh hourly expansion factor

14
  • V24,ests, ? fFlowest(x,t?t s,?), EFh(h(t))
  • AADTimgs f V24,ests, ?, EFMDm(?),d(?)
  • EFMD seasonal factor (month-of-year,
    day-of-week)

15
Relative Error(AADT Image-based AADTTrue) /
AADTTrue AADTTrue ? AADTGround-based
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
Relative Errors, RE
  • N 18
  • N(RE gt 0) 12
  • N(RE lt 0) 6
  • Sample Mean 0.03
  • Sample St. Dev. 0.15
  • RELATIVELY UNBIASED

20
Relative Errors, RE
  • Sample St. Dev. (w. mean 0) 0.15
  • Maximum RE 0.34
  • Lower RE with better AADTGr-based
  • Equiv. Count Interval 0.6 12.6 mins
  • SURPRISING, PROMISING PERFORMANCE

21
RE Decreases with Increased Simulated Time
Interval
22
NETWORK LEVEL ANALYSIS
23
Computer Simulation
  • Inputs
  • Traffic Patterns
  • AADT distribution, Link Lengths, EFM, EFD
  • - Ground-Based Sampling
  • Permanent ATRs (PATRs)
  • Coverage Counts (MATRs)
  • Satellite-Based Sampling
  • Variability/Error/Random Terms
  • Outputs
  • - AADT and VKT (VMT) Estimation Error
  • Ground-Based Data Only
  • Satellite- and Ground-Based Combination

24
Satellite-Based Sampling Physical Relations
  • FCDlat1,lat2 2(1-Fnpgt)NPIXRESNORB
  • Llat1,lat2i, NORB)10-3)/EARlat1, lat2
    (5)
  •  
  • NORB 8,681,665.8/ (RH)1.5 orbits/day
    (9)
  •  
  • H gt 200 km gt NORB lt 16.3 orbits/day
    (10)
  •  
  • H (FL/WPI)(RES)(103) km (12)
  •  
  • NORBgt8,681,665/((FL/WPI)max(RES(103)6371)1.5
    orb/day (14)
  •  
  • Vsg 0.4633(NORB) km/sec (17)
  •  
  • DBR 3.706(NORB)(NPIX)(10-3)/(RESCOMP)
    Mbits/sec (18)
  •  
  • (NPIX)( NORB) lt 269.8(RES)(DBRCOMP)max
    (20)

25
Satellite-Based SamplingMaximal Coverage
  • (P1) Max Z1NORBNPIXLlat1,lat2i,NORB
  • NORB,NPIX,i
  • s.t. 90 lt i lt 180
  • 8,681,665.8/((FL/WPI)max RES(103)6371)1.5
  • lt NORB lt 16.3
  • 0 lt NPIX lt NPIXmax
  • (NPIX)(NORB) lt 269.8(RES)(DBRCOMP)max

26
Satellite-Based Sampling Daily Coverage vs.
Resolution and Inclination Angle
27
Variability/Error/Random Terms
  • Ground-based sample ?(gr)
  • V24(gr)s,? AADTsEFMM(?)-1 EFDD(?)-1
  • exp(?(gr) -? (gr)2/2),
  • ?(gr) N(0, ?(gr))
  • ?(gr) Daily deviation from deterministic
    model
  • Satellite-based sample ?(sat)
  • V24(sat)s,? AADTsEFMM(?)-1 EFDD(?)-1
  • exp(?(sat) -? (sat)2/2),
  • ?(sat) N(0, ?(sat))
  • ?(sat) Error in Expanding Short-Duration
    Counts
  • and Daily Variability

28
(No Transcript)
29
(No Transcript)
30
Impact of Satellite Supply Equivalent
Satellite Coverage (ESC)
31
(No Transcript)
32
Extensions
  • More image- vs. ground-based comparisons
  • Expansion of short-interval flows
  • Improved hourly factors
  • Quantification of uncertainty in sub-hour
    expansion
  • Bayesian and model-based estimation
  • Spatial correlations
  • Satellite and air-based sampling strategies
  • Other Uses of Volume Data
  • Statewide truck OD estimation
  • Screening tool growth factors, ground-based
    sample strategies
  • Implementation strategies
Write a Comment
User Comments (0)
About PowerShow.com