Title: Richardson Extrapolation
1ME6758, Dr. Ferri
Richardson Extrapolation
Start with some integration rule, N(h), and some
general trend of the error as a function of h
(1)
Now, divide h by 2 (double the number of
intervals)
(2)
To eliminate the lowest order error term, take
2Eq2 Eq1
Call this N2(h)
2weighted average
Now,
(3)
Halve h again (double the number of intervals)
(4)
Eliminate h2 terms by taking 4Eq4 Eq3
Call this N3(h)
3This is accurate to order O(h3)
Now,
The O(h4) approximation is given by
The O(h5) approximation is given by
This is accurate to order O(hj)
In general
4Construct a Table
O(h) O(h2) O(h3) O(h4)
N2(h) N2(h/2) N2(h/4)
N3(h) N3(h/2)
N4(h)
N1(h) N1(h/2) N1(h/4) N1(h/8)
5Romberg Integration
Start with composite trapezoidal rule with
m-intervals, (m1) points
a lt m lt b
h (b-a)/m
xj a jh
Perform n trapezoidal integrations using m1 1
interval, m2 2 intervals, m3 4 intervals,
mn 2n-1 intervals. In each case hk (b-a)/mk
(b-a)/ 2k-1
Call this Rk,1
6h3
h2
h1
R1,1
R2,1
R3,1
h1/2
just R1,1/2
7h3
h2
h1
R1,1
R2,1
R3,1
h2/2
just R2,1/2
odd multiples of hk
8R1,1
new point
R2,1
new point
new point
R3,1
h4
R4,1
h5
R5,1
R6,1
2 endpoints, 2k-1-1 interior points, 2k-2
additional points
Rk,1
odd multiples of hk
9Example
Converges, but rather slowly
10Subtract top equation from 4 times bottom
equation. After algebra, get
Re-write as
Now, extrapolate again to eliminate O(hk4) terms
to obtain an O(hk6) result, etc
11Define
Error O(hk2j)
Generalize to
R1,1 R2,1 R3,1 R4,1 Rn,1
R2,2 R3,2 R4,2 Rn,2
R3,3 R4,3 Rn,3
R4,4 Rn,4
Rn,n
Construct Romberg Table
Obtain from a single composite trapezoidal integra
tion
IRn,n O(hn2n)
Obtain by simple averaging
12Example
0.00000000 Â Â Â Â Â
1.57079633 2.09439511 Â Â Â Â
1.89611890 2.00455976 1.99857073 Â Â Â
1.97423160 2.00026917 1.99998313 2.00000555 Â Â
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999 Â
1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000
Error in R6,6 is only 6.61026789e-011 !!!!
Accurate to O(h612)
h6 p/32 9.817e-002, h612 8.017e-013