Richardson Extrapolation - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Richardson Extrapolation

Description:

to order O(h3) The O(h4) approximation is given by: The O(h5) ... Start with composite trapezoidal rule with m-intervals, (m 1) points. a m b. h = (b-a)/m ... – PowerPoint PPT presentation

Number of Views:654
Avg rating:3.0/5.0
Slides: 13
Provided by: alfe
Category:

less

Transcript and Presenter's Notes

Title: Richardson Extrapolation


1
ME6758, Dr. Ferri
Richardson Extrapolation
Start with some integration rule, N(h), and some
general trend of the error as a function of h
(1)
Now, divide h by 2 (double the number of
intervals)
(2)
To eliminate the lowest order error term, take
2Eq2 Eq1
Call this N2(h)
2
weighted average
Now,
(3)
Halve h again (double the number of intervals)
(4)
Eliminate h2 terms by taking 4Eq4 Eq3
Call this N3(h)
3
This is accurate to order O(h3)
Now,
The O(h4) approximation is given by
The O(h5) approximation is given by
This is accurate to order O(hj)
In general
4
Construct a Table
O(h) O(h2) O(h3) O(h4)
N2(h) N2(h/2) N2(h/4)
N3(h) N3(h/2)
N4(h)
N1(h) N1(h/2) N1(h/4) N1(h/8)
5
Romberg Integration
Start with composite trapezoidal rule with
m-intervals, (m1) points
a lt m lt b
h (b-a)/m
xj a jh
Perform n trapezoidal integrations using m1 1
interval, m2 2 intervals, m3 4 intervals,
mn 2n-1 intervals. In each case hk (b-a)/mk
(b-a)/ 2k-1
Call this Rk,1
6
h3
h2
h1
R1,1
R2,1
R3,1
h1/2
just R1,1/2
7
h3
h2
h1
R1,1
R2,1
R3,1
h2/2
just R2,1/2
odd multiples of hk
8
R1,1
new point
R2,1
new point
new point
R3,1
h4
R4,1
h5
R5,1
R6,1
2 endpoints, 2k-1-1 interior points, 2k-2
additional points
Rk,1
odd multiples of hk
9
Example
Converges, but rather slowly
10
Subtract top equation from 4 times bottom
equation. After algebra, get
Re-write as
Now, extrapolate again to eliminate O(hk4) terms
to obtain an O(hk6) result, etc
11
Define
Error O(hk2j)
Generalize to
R1,1 R2,1 R3,1 R4,1 Rn,1
R2,2 R3,2 R4,2 Rn,2
R3,3 R4,3 Rn,3
R4,4 Rn,4
Rn,n
Construct Romberg Table
Obtain from a single composite trapezoidal integra
tion
IRn,n O(hn2n)

Obtain by simple averaging
12
Example
0.00000000          
1.57079633 2.09439511        
1.89611890 2.00455976 1.99857073      
1.97423160 2.00026917 1.99998313 2.00000555    
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999  
1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000
Error in R6,6 is only 6.61026789e-011 !!!!
Accurate to O(h612)
h6 p/32 9.817e-002, h612 8.017e-013
Write a Comment
User Comments (0)
About PowerShow.com