Title: Spectral Properties of a 2D SpinOrbit Hamiltonian
1Spectral Properties ofa 2D Spin-Orbit Hamiltonian
Denis Bulaev Department of Physics University of
Basel, Switzerland
2Outline
- Motivation
- k.p method
- 2DEG
- Quantum Dots
- Summary
3Motivation
Supercoducting A.Shnirman, G.Shön, Z.Herman,
PRL 79, 2371 (1997) Quantum-Dot-based D.Loss
and D.P.DiVincenzo, PRA 57, 120 (1998)
Nanoll make 1T/yr by 2015
4k.p method
Pauli Hamiltonian
Thomas term (s-o coupling)
5Inversion asymmetric strs. (Td)
CB l0 (s) jls1/2 VB l1 (p) j3/2 1/2
Bir and Pikus. Symmetry and Strain-Induced
Effects in Semiconductors (Wiley, New York, 1974).
6Inversion asymmetric strs. (Td)
Single group Double
group
E
E
j1/2 G6
G1 l0
D x G1 G6 D x G15 G7 G8
Eg
D
j3/2 G8
G15 l1
j1/2 G7
k
k
Optical Orientation, ed. by Zakharchenya and F.
Meier (North - Holland, Amsterdam, 1984) Bir and
Pikus. Symmetry and Strain-Induced Effects in
Semiconductors (Wiley, New York, 1974).
7Kane Hamiltonian
Folding down
8Electron effective Hamiltonian
Dresselhaus SO (DSO) coupling
Dresselhaus, Phys. Rev. 100, 580 (1955).
(GaAs, InAs, InSb, etc - inversion
asymmetry) For Ge, Si - inversion symmetric strs
(point group Oh Td x Ci ) DSO 0!
Remark No. 1 DSO is due to bulk inversion
asymmetry (BIA)
92DEG
GaAs
GaAs
AlxGa1-xAs
AlyGa1-yAs
AlxGa1-xAs
AlxGa1-xAs
V(z)
V(z)
z
z
D2d (E C2 2C2 2sd 2S4)
C2v (E C2 2sv)
10Dresselhaus SO interaction
D'yakonov Kocharovskii, Sov. Phys. Semicond.
20, 110 (1986)
11Rashba SO interaction
After folding down
Bychkov Rashba, JETP Lett. 39, 78 (1984).
Remark No. 2 RSO is due to structure inversion
asymmetry (SIA)
12Spin degeneracy splitting
13Energy spectrum of 2DEG
Ganichev, et al., PRL 92, 256601 (2004).
14Spin decoherence anisotropy
Averkiev Golub PRB 60, 15582 (1999).
Remark No. 3 SO coupling leads to anisotropy in
dispersion and spin decoherence
15Effective Hamiltonian for a QD
16Canonical transformation
Geyler, Margulis, Shorokhov, PRB 63, 245316
(2001).
17Three lowest electron energy levels
Dresselhaus SO coupling
Rashba SO coupling
Anti-crossing (crossing) of the levels E2 and E3
at
18Anticrossing due to Rashba coupling
E3 E1
0.25
0.20
orbital
Energy meV
0.15
0.10
Zeeman
E2 E1
0.05
E1 E1
0
8
2
4
6
10
B T
Bulaev, Loss, PRB 71, 205324 (2005).
19Summary
- SO coupling is due to space inversion asymmetry
- Dispersion anisotropy in a 2DEG
- Anticrossing due to RSO in a QD