Title: DNA Computers Applications: Cryptography
1DNA Computers ApplicationsCryptography
- Constanza Lampasona
- Innovative Computer Architectures and Concepts
- Computer Architecture Department - University of
Stuttgart
2Motivation
- Silicon technologies have limits
- Research intends to deal with silicon
disadvantages - DNA computing -gt inherent parallelism
- Cryptographic problem requires vast parallelism
Lets solve the cryptographic problem using a
molecular computer!!!
3Outline
- 1. Introduction
-
- 2. Cryptography
- 3. DNA Computing
- 4. Breaking DES using a molecular computer
- 5. Conclusions
4Introduction
- Encoding data as in nature
5Introduction
Secret writing
Gjoejoh uif lfz
Data Encryptation Standard approved
cryptographic algorithm as required by FIPS
140-1 (Federal Information Processing Standards)
6Outline
- 1. Introduction
-
- 2. Cryptography
- 3. DNA Computing
- 4. Breaking DES using a molecular computer
- 5. Conclusions
7Cryptography
Lets look at history...
8Cryptography
9Cryptography
10Cryptography
Decryption
Encryption
Secret KEY
11Cryptography
Encrypted data (cipher-text) Khoor zruog
Secret KEY shift by 3
a b c d e f g h i j k l m n o p q r s t u v w x y
z
d e f g h i j k l m n o p q r s t u v w x y z a b
c
Decrypted data (plain-text) Hello world
12Cryptography
- Data Encryption Standard (DES)
- Crytographic algorithm (National Bureau of
Standards). - Enciphering and Deciphering.
- 64-bit key.
- Data depends on keys security.
- Unique key for encryting and decryting.
13Cryptography
- DES Data Encryption Algorithm
- Enciphering
14Cryptography
Initial permutation IP
Inverse initial permutation IP -1
Computation
Input
Output
IP 58 50 42 34 26 18 10 2 60
52 44 36 28 20 12 4 62 54
46 38 30 22 14 6 64 56 48
40 32 24 16 8 57 49 41 33
25 17 9 1 59 51 43 35 27 19
11 3 61 53 45 37 29 21 13
5 63 55 47 39 31 23 15 7
15Cryptography
Initial permutation IP
Inverse initial permutation IP -1
Computation
Input
Output
- Uses the permuted input block as input.
- Produces a pre-output block.
- 16 iterations.
16Cryptography
Initial permutation IP
Inverse initial permutation IP -1
Computation
Input
Output
IP-1 40 8 48 16 56 24 64 32 39
7 47 15 55 23 63 31 38 6
46 14 54 22 62 30 37 5 45
13 53 21 61 29 36 4 44 12
52 20 60 28 35 3 43 11 51 19
59 27 34 2 42 10 50 18 58
26 33 1 41 9 49 17 57 25
Plain-text
Cipher-text
Key
17Outline
- 1. Introduction
-
- 2. Cryptography
- 3. DNA Computing
- 4. Breaking DES using a molecular computer
- 5. Conclusions
18DNA Computing
19DNA Computing
20DNA Computing
DNA Computer DNA Strands Combinations
Solution
- Based on Adlemans work (1994)
- Solve huge problems by parallel search
- Much faster than a conventional computer
- More hardware vs. more DNA
21Outline
- 1. Introduction
-
- 2. Cryptography
- 3. DNA Computing
- 4. Breaking DES using a molecular computer
- 5. Conclusions
22Breaking DES
- Finding a key given one pair (plain-text,
cipher-text). - Pre-processing one day of work recover the
key. - First example of a real problem solved using DNA.
23Breaking DES
- Massive parallel DNA computing approach
- Generate all possible solutions in parallel
- Remove wrong solutions
24Breaking DES
- Representing binary strings
- Plan of DES attack
- Prepare the DNA solution
- Extract desired patterns
- Read the result
- Break DES!!!
25Breaking DES
- Summary of the experiment
- DES(M0,k) encoding plain-text with all possible
256 keys - 4 months
- Extract DES(M0,k)E0, (plaintext, cipher-text)
- Read k
- 1 day
DNA Computer DNA Strands Combinations
Solution
26Outline
- 1. Introduction
-
- 2. Cryptography
- 3. DNA Computing
- 4. Breaking DES using a molecular computer
- 5. Conclusions
27Conclusions
- DNA computing with a concrete application,
Cryptography - Very general attack on DES, using 64-bit key
- Cryptosystems with 64-bit key are insecure
- Future of molecular computers Unclear
28Summary
- Cryptography
- DES
- DNA Computing gtgtgt Parallelism
- Breaking DES
29http//www.ra.informatik.uni-stuttgart.de/virazel
a/Seminar/Material/Presentation8/