DNA Computers Applications: Cryptography - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

DNA Computers Applications: Cryptography

Description:

DNA computing - inherent parallelism. Cryptographic problem ... 'The art of writing with a secret key or in ... Cryptography. 11. Cryptography ... – PowerPoint PPT presentation

Number of Views:1025
Avg rating:3.0/5.0
Slides: 30
Provided by: raInforma
Category:

less

Transcript and Presenter's Notes

Title: DNA Computers Applications: Cryptography


1
DNA Computers ApplicationsCryptography
  • Constanza Lampasona
  • Innovative Computer Architectures and Concepts
  • Computer Architecture Department - University of
    Stuttgart

2
Motivation
  • Silicon technologies have limits
  • Research intends to deal with silicon
    disadvantages
  • DNA computing -gt inherent parallelism
  • Cryptographic problem requires vast parallelism

Lets solve the cryptographic problem using a
molecular computer!!!
3
Outline
  • 1. Introduction
  • 2. Cryptography
  • 3. DNA Computing
  • 4. Breaking DES using a molecular computer
  • 5. Conclusions

4
Introduction
  • Encoding data as in nature

5
Introduction
  • Cryptography

Secret writing
Gjoejoh uif lfz
Data Encryptation Standard approved
cryptographic algorithm as required by FIPS
140-1 (Federal Information Processing Standards)
6
Outline
  • 1. Introduction
  • 2. Cryptography
  • 3. DNA Computing
  • 4. Breaking DES using a molecular computer
  • 5. Conclusions

7
Cryptography
Lets look at history...
8
Cryptography
  • Encryption

9
Cryptography
  • Decryption

10
Cryptography
Decryption
Encryption
Secret KEY
11
Cryptography
Encrypted data (cipher-text) Khoor zruog
Secret KEY shift by 3
a b c d e f g h i j k l m n o p q r s t u v w x y
z
d e f g h i j k l m n o p q r s t u v w x y z a b
c
Decrypted data (plain-text) Hello world
12
Cryptography
  • Data Encryption Standard (DES)
  • Crytographic algorithm (National Bureau of
    Standards).
  • Enciphering and Deciphering.
  • 64-bit key.
  • Data depends on keys security.
  • Unique key for encryting and decryting.

13
Cryptography
  • DES Data Encryption Algorithm
  • Enciphering

14
Cryptography
Initial permutation IP
Inverse initial permutation IP -1
Computation
Input
Output
IP 58 50 42 34 26 18 10 2 60
52 44 36 28 20 12 4 62 54
46 38 30 22 14 6 64 56 48
40 32 24 16 8 57 49 41 33
25 17 9 1 59 51 43 35 27 19
11 3 61 53 45 37 29 21 13
5 63 55 47 39 31 23 15 7
15
Cryptography
Initial permutation IP
Inverse initial permutation IP -1
Computation
Input
Output
  • Uses the permuted input block as input.
  • Produces a pre-output block.
  • 16 iterations.

16
Cryptography
Initial permutation IP
Inverse initial permutation IP -1
Computation
Input
Output
IP-1 40 8 48 16 56 24 64 32 39
7 47 15 55 23 63 31 38 6
46 14 54 22 62 30 37 5 45
13 53 21 61 29 36 4 44 12
52 20 60 28 35 3 43 11 51 19
59 27 34 2 42 10 50 18 58
26 33 1 41 9 49 17 57 25
Plain-text
Cipher-text
Key
17
Outline
  • 1. Introduction
  • 2. Cryptography
  • 3. DNA Computing
  • 4. Breaking DES using a molecular computer
  • 5. Conclusions

18
DNA Computing
  • DNA

19
DNA Computing
  • The Structure of DNA

20
DNA Computing
DNA Computer DNA Strands Combinations
Solution
  • Based on Adlemans work (1994)
  • Solve huge problems by parallel search
  • Much faster than a conventional computer
  • More hardware vs. more DNA

21
Outline
  • 1. Introduction
  • 2. Cryptography
  • 3. DNA Computing
  • 4. Breaking DES using a molecular computer
  • 5. Conclusions

22
Breaking DES
  • The Idea
  • Finding a key given one pair (plain-text,
    cipher-text).
  • Pre-processing one day of work recover the
    key.
  • First example of a real problem solved using DNA.

23
Breaking DES
  • Massive parallel DNA computing approach
  • Generate all possible solutions in parallel
  • Remove wrong solutions

24
Breaking DES
  • Representing binary strings
  • Plan of DES attack
  • Prepare the DNA solution
  • Extract desired patterns
  • Read the result
  • Break DES!!!

25
Breaking DES
  • Summary of the experiment
  • DES(M0,k) encoding plain-text with all possible
    256 keys
  • 4 months
  • Extract DES(M0,k)E0, (plaintext, cipher-text)
  • Read k
  • 1 day

DNA Computer DNA Strands Combinations
Solution
26
Outline
  • 1. Introduction
  • 2. Cryptography
  • 3. DNA Computing
  • 4. Breaking DES using a molecular computer
  • 5. Conclusions

27
Conclusions
  • DNA computing with a concrete application,
    Cryptography
  • Very general attack on DES, using 64-bit key
  • Cryptosystems with 64-bit key are insecure
  • Future of molecular computers Unclear

28
Summary
  • Cryptography
  • DES
  • DNA Computing gtgtgt Parallelism
  • Breaking DES

29
http//www.ra.informatik.uni-stuttgart.de/virazel
a/Seminar/Material/Presentation8/
Write a Comment
User Comments (0)
About PowerShow.com