Title: Outline
1Outline
- Introduction (physical background)
- Magic Angle Spinning
- Advanced Pulse Techniques
- Applications
- Instrument Setup
- Measurements
2Selection of multiquantum coherence
3Selection of multiquantum coherence
4Correlation experiment
5Homonuclear correlation
6Homonuclear correlation establishing
connectivities
7Dipolar Coupling
8Measuring dipolar coupling constants
9(No Transcript)
10Dipolar recovery at the magic angle (DRAMA)
11Full DRAMA sequence
12Zero and double quantum coherence
13Double quantum filtered experiments
14The C7 recoupling sequence
15Rotational resonance experiment
16Data resulting from rotational resonance
17Heteronuclear correlation general spin-echo
sequence
18Spin-echo double resonance experiment (SEDOR)
19The REDOR experiment
20Transfer of population in double resonance
(TRAPDOR )
21Adiabatic zero crossing
22REAPDOR sequence for measuring dipolar couplings
between I 1 and I 1/2 spins
23Homonuclear correlation between I 1/2 spins
24Double/single quantum correlation
25Homonuclear double/single-quantum correlation
26Outline
- Introduction (physical background)
- Magic Angle Spinning
- Advanced Pulse Techniques
- Applications
- Instrument Setup
- Measurements
27Investigating reaction products
28Chemical shift information
29Tolane sample 13C spectrum CP-MAS _at_ 12 kHz
30(No Transcript)
31Selective experiment Quaternary carbon signals
only (NQS)
32(No Transcript)
33Measuring molecular motion
34Dipolar interaction and molecular motion
35Two site jumps
Three site jumps
109.5
120
70.5
36Two site hopping, 120 reorientation, shielding
tensor 10 kHz
37Basic 2D exchange experiment
382D exchange spectrum
393D exchange sequence
40Outline
- Introduction (physical background)
- Magic Angle Spinning
- Advanced Pulse Techniques
- Applications
- Instrument Setup
- Measurements
41Temperature ranges
VTN Variable Temperature Normal
(BN-Stator) WVT Wide Variable Temperature
(MgO-Stator) DVT Direct Variable Temperature
(BN-Stator)
150C
300C
-120C
-140C
T
VTN
WVT
DVT
Exception 2,5-mm-probe heads -30C 70C
42Probehead design
VTN/WVT variable temperature with bearing
DVT separate cooling gas supply
43Positioning of the thermocouples (DVT)
TC 1 control
PH MAS DVT 600 WB BL4 (H8724)
TC 2 regulation
44Rotor caps
ZrO2
Macor
BN
Kel-F
Vespel
45Application range of rotor caps
Kel-F (polymer) room temp. , (shrinks at low
temp., deformation at high temp.), easy
removal BN (ceramics) low and high temp.,
mechanically sensitive, to be glued Macor
(ceramics) low and high temp., mechanically
sensitive, to be glued ZrO2 (ceramics) low
and high temp., mechanically tolerant, easy
removal, expensive ... Vespel (polymer) high
speed and high temperature, easy removal
46Decoupling sequences TPPM
TPPM Two Pulse Phase Modulation
Pulse length tp ? tp - e e ? 0 0.6 ms,
optimize!
Phaseshift ? ? 15, evt. optimize!
47TPPM- decoupling, optimize tp
Ca-signal in Glycine-2-13C-15N, nrot 30 kHz, ?
15
ndec 150 kHz
optimum pulse length tp 2.9 ms, (tp 3.2 ms)
48XiX - decoupling
XiX X Inverse X
Pulse length tp x tR, x ? n, but x ? n, ...
(recoupling at (n/4)tR ) optimize!
49XiX- decoupling, optimize tp
Ca-signal of glycine-2-13C-15N, nrot 30 kHz,
ndec 150 kHz
50Comparison of decoupling methods
Ca-signal of glycine-2-13C-15N, ndec 150 kHz
10 kHz
TPPM (15)
CW
XiX
30 kHz
51Decoupling methods p-pulse decoupling
Rotorsynchronised train of 180-pulses xy-16-phase
cycle for large band width
xy-16-phase cycle 090900090900180270270
180180270270180
52p-pulse decoupling for 19F
19F Dipol-Dipol-coupling spun out at fast
rotation but large chemical shift
anisotropy ? large band width important
19F-spectrum of teflon at 30 kHz
53p-pulse-decoupling for 19F
13C19F-CP/MAS-spectrum of Teflon, nrot 30 kHz
CW
TPPM 15
p-pulse
54Cross polarization
Condition for contact pulsesHartmann-Hahn
matching
55Efficiency for (1H? X)-CP
Acquisition
X
CP
decoupling
1H
56Comparison of standard and ramp-CP
Carbonyl-signal of glycine (nat. abundance), nrot
20 kHz, as function of 1H-power
rectangle
ramp
57unwanted CP during the C7 sequence
avoid CP
58Double-CP
CP 1
Decoupling
Avoid CP
1H
CP 2
Y
Acquisition
X