Title: equilibrium beaches
1equilibrium beaches and logarithmic spirals
2Swash and backwash Longshore drift
3Swash and backwash Longshore drift
Longshore drift depends on prevailing wave angle
of incidence
E.g. S sin f cos f
4Swash and backwash Longshore drift
S sin f cos f
f0 or fp/2 No longshore drift. Static
equilibrium
fk Constant longshore drift. Dynamic
equilibrium
5Dynamic equilibrium beaches
- River of sand influxoutflux for each
control volume - Simplest case Straight beach
- Stable equilibrium?
Ninety Mile Beach, New Zealand
6Dynamic equilibrium beaches
Conjecture Under statistically
stationary-in-time conditions, all beaches will
reach equilibrium. Dynamic equilibrium is only
possible with constant-flux boundary conditions
7Logarithmic spirals
r r0ekf
8Logarithmic spirals
Fun property 1 Scale invariant (apart from a
rotation) Jakob Bernoulli, 1692
Ar0ekf r0ekfln A
9Logarithmic spirals
Fun property 2 Finite length (Torricelli,
1645, and Wallis, 1657)
Fun property 3 Circle in the limit
Fun property 4 A coiled-up straight
cone (Christopher Wren, 1669)
10Logarithmic spirals
Fun property 5 Equiangular (Descartes, 1638)
11Breakwaters/groins/headlands
12Breakwaters/groins/headlands
13(No Transcript)
14(No Transcript)
15Complications -(
- Real logarithmic beaches are often seemingly
- in static equilibrium, with waves parallel to
shore - Refraction
- Position of center of spiral
- Boundary conditions
16Questions
- What is the local mechanism for trajectory
- towards equilibrium?
- Are logarithmic beaches in static or dynamic
- equilibrium?
- Why the logaritmic spiral shape?
17(No Transcript)