Title: Lecture 1: Introduction to Machine Learning
1Lecture 1 Introduction to Machine Learning
- Isabelle Guyon
- isabelle_at_clopinet.com
2What is Machine Learning?
Trained machine
TRAINING DATA
Answer
?
Query
3What for?
- Classification
- Time series prediction
- Regression
- Clustering
4Applications
5Banking / Telecom / Retail
- Identify
- Prospective customers
- Dissatisfied customers
- Good customers
- Bad payers
- Obtain
- More effective advertising
- Less credit risk
- Fewer fraud
- Decreased churn rate
6Biomedical / Biometrics
- Medicine
- Screening
- Diagnosis and prognosis
- Drug discovery
- Security
- Face recognition
- Signature / fingerprint / iris verification
- DNA fingerprinting
6
7Computer / Internet
- Computer interfaces
- Troubleshooting wizards
- Handwriting and speech
- Brain waves
- Internet
- Hit ranking
- Spam filtering
- Text categorization
- Text translation
- Recommendation
7
8Conventions
n
Xxij
y yj
m
xi
a
w
9Learning problem
Data matrix X m lines patterns (data points,
examples) samples, patients, documents, images,
n columns features (attributes, input
variables) genes, proteins, words, pixels,
Unsupervised learning Is there structure in
data? Supervised learning Predict an outcome y.
Colon cancer, Alon et al 1999
10Some Learning Machines
- Linear models
- Kernel methods
- Neural networks
- Decision trees
11Linear Models
- f(x) w ? x b Sj1n wj xj b
- Linearity in the parameters, NOT in the input
components. - f(x) w ? F(x) b Sj wj fj(x) b
(Perceptron) - f(x) Si1m ai k(xi,x) b (Kernel method)
12Artificial Neurons
Cell potential
Axon
Activation of other neurons
Activation function
Dendrites
Synapses
f(x) w ? x b
McCulloch and Pitts, 1943
13Linear Decision Boundary
14Perceptron
Rosenblatt, 1957
15NL Decision Boundary
16Kernel Method
Potential functions, Aizerman et al 1964
17What is a Kernel?
- A kernel is
- a similarity measure
- a dot product in some feature space k(s, t)
F(s) ? F(t) - But we do not need to know the F representation.
- Examples
- k(s, t) exp(-s-t2/s2) Gaussian kernel
- k(s, t) (s ? t)q Polynomial kernel
18Hebbs Rule
Axon
Link to Naïve Bayes
19Kernel Trick (for Hebbs rule)
- Hebbs rule for the Perceptron
- w Si yi F(xi)
- f(x) w ? F(x) Si yi F(xi) ? F(x)
- Define a dot product
- k(xi,x) F(xi) ? F(x)
- f(x) Si yi k(xi,x)
-
20Kernel Trick (general)
- f(x) Si ai k(xi, x)
- k(xi, x) F(xi) ? F(x)
- f(x) w ? F(x)
- w Si ai F(xi)
Dual forms
21Simple Kernel Methods
f(x) S ai k(xi, x) k(xi, x)
F(xi).F(x) Potential Function algorithm ai ? ai
yi if yif(xi)lt0 (Aizerman et al 1964) Dual
minover ai ? ai yi for min yif(xi) Dual
LMS ai ? ai ? (yi - f(xi))
f(x) w F(x) Perceptron algorithm w ? w
yi F(xi) if yif(xi)lt0 (Rosenblatt
1958) Minover (optimum margin) w ? w yi F(xi)
for min yif(xi) (Krauth-Mézard 1987) LMS
regression w ? w ? (yi- f(xi)) F(xi)
w S ai F(xi)
i
i
(ancestor of SVM 1992, similar to kernel
Adatron, 1998, and SMO, 1999)
22Multi-Layer Perceptron
Back-propagation, Rumelhart et al, 1986
23Chessboard Problem
24Tree Classifiers
- CART (Breiman, 1984) or C4.5 (Quinlan, 1993)
25Iris Data (Fisher, 1936)
Figure from Norbert Jankowski and Krzysztof
Grabczewski
Linear discriminant
Tree classifier
versicolor
setosa
virginica
Gaussian mixture
Kernel method (SVM)
26Fit / Robustness Tradeoff
x2
x1
15
27Performance evaluation
f(x) lt 0
f(x) lt 0
x2
f(x) 0
f(x) 0
f(x) gt 0
f(x) gt 0
x1
28Performance evaluation
f(x) lt -1
f(x) lt -1
x2
f(x) -1
f(x) -1
f(x) gt -1
f(x) gt -1
x1
29Performance evaluation
f(x) lt 1
f(x) lt 1
x2
f(x) 1
f(x) 1
f(x) gt 1
f(x) gt 1
x1
30ROC Curve
For a given threshold on f(x), you get a point
on the ROC curve.
Ideal ROC curve
100
Actual ROC
Positive class success rate (hit rate,
sensitivity)
Random ROC
0
100
1 - negative class success rate (false alarm
rate, 1-specificity)
31ROC Curve
For a given threshold on f(x), you get a point
on the ROC curve.
Ideal ROC curve (AUC1)
100
Actual ROC
Positive class success rate (hit rate,
sensitivity)
Random ROC (AUC0.5)
0 ? AUC ? 1
0
100
1 - negative class success rate (false alarm
rate, 1-specificity)
32What is a Risk Functional?
- A function of the parameters of the learning
machine, assessing how much it is expected to
fail on a given task. - Examples
- Classification
- Error rate (1/m) Si1m 1(F(xi)?yi)
- 1- AUC
- Regression
- Mean square error (1/m) Si1m(f(xi)-yi)2
33How to train?
- Define a risk functional Rf(x,w)
- Optimize it w.r.t. w (gradient descent,
mathematical programming, simulated annealing,
genetic algorithms, etc.)
( to be continued in the next lecture)
34Summary
- With linear threshold units (neurons) we can
build - Linear discriminant (including Naïve Bayes)
- Kernel methods
- Neural networks
- Decision trees
- The architectural hyper-parameters may include
- The choice of basis functions f (features)
- The kernel
- The number of units
- Learning means fitting
- Parameters (weights)
- Hyper-parameters
- Be aware of the fit vs. robustness tradeoff
35Want to Learn More?
- Pattern Classification, R. Duda, P. Hart, and D.
Stork. Standard pattern recognition textbook.
Limited to classification problems. Matlab code.
http//rii.ricoh.com/stork/DHS.html - The Elements of statistical Learning Data
Mining, Inference, and Prediction. T. Hastie, R.
Tibshirani, J. Friedman, Standard statistics
textbook. Includes all the standard machine
learning methods for classification, regression,
clustering. R code. http//www-stat-class.stanford
.edu/tibs/ElemStatLearn/ - Linear Discriminants and Support Vector Machines,
I. Guyon and D. Stork, In Smola et al Eds.
Advances in Large Margin Classiers. Pages
147--169, MIT Press, 2000. http//clopinet.com/isa
belle/Papers/guyon_stork_nips98.ps.gz - Feature Extraction Foundations and Applications.
I. Guyon et al, Eds. Book for practitioners with
datasets of NIPS 2003 challenge, tutorials, best
performing methods, Matlab code, teaching
material. http//clopinet.com/fextract-book -