Title: Metabolomics
1Metabolomics
- Sarah C. Rutan
- Ernst Bezemer
- Department of Chemistry
- Virginia Commonwealth University
- July 29 31, 2003
2What is Metabolomics?
- Small molecule/metabolite complement of
individual cells or tissues - Network model of cells
- S. cerevisiae 45 reactions (16 reversible 29
irreversible) 42 internal metabolites 7
external metabolites - Time-dependent small molecule/ metabolite
profiles in biological tissue (serum, urine) ---
metabonomics
3Why do Metabolomics?
4How to do Metabolomics?
- In-vivo
- Studies in the species of interest
- Fermentation broths microbes
- Animals blood and urine
- Plants
- In-vitro
- Test tube experiments
- Incubations under physiological conditions
- In-silico
- Computer simulations
5Benzoapyrene
- Product of incomplete combustion of organic
matter - Flame-broiled/smoked food
- Cigarette smoke
- Coal-tar
- Activated by enzymes such as cytochrome P450 and
epoxide hydrolase to form diols and tetrols - BP diols and tetrols form adducts with DNA
- Mutagenic
- Teratogenic
- Carcinogenic
6BP Metabolites
- Benzoapyrene (BP)
- Quinones (Qn)
- 7?,8?,9?,10?-tetrahydrotetrol (tetrol)
- 7?,8?-dihydroxy-9?,10?-epoxy-7,8,9,10 tetrahydro
BP (DE2) - 7,8-oxide-9,10 dihydrodiol BP (DE3)
- BP-2,3 oxide (n.d.)
- BP-4,5 oxide (4,5-ox)
- BP-4,5 diol (4,5-diol)
- BP-7,8 oxide (7,8-ox)
- BP-7,8 diol (7,8-diol)
- BP-9,10 oxide (9,10-ox)
- BP-9,10 diol (9,10-diol)
- BP-7,8 oxide-9,10 dihydrodiol
- 3-Hydroxy BP (3-OH)
- 9-Hydroxy BP (9-OH)
- Cytochrome P450 1A1 (1A1)
- Epoxide Hydrolase (EH)
7Elementary Reaction Steps
- Steps that occur as written
- A B ? AB
- A collides with B to form a product AB
- Reaction rates
-
-
-
-
8First-Order Kinetics
- A ? B
-
-
- Define y as the states of the system
- y(1) At
- y(2) Bt
9First-Order Kinetics
Bt At
Conc
Time
10Second Order Kinetics
- A B ? AB
-
-
-
- Define y as the states of the system
- y(1) At
- y(2) Bt
- y(3) ABt
11Exercise 1
- What is the result of entering the following
commands into Matlab? - t15
- k0.5
- aexp(-kt)
- plot(t,a)
- b1-a
- concab
- plot(t,conc)
12Ordinary Differential Equations
- Analytical solutions
- via standard mathematical integration methods
- Numerical solutions
- computer based integration
- required for systems for no analytical solution
- Runge-Kutta algorithm is commonly used
- Stiff equations
- Have both fast and slow reaction components
- Non-stiff equations
- All reactions occur over the same time scale
13Differential Equation Solver in Matlab First
Order Kinetics
- In Matlab command window, select File, New,
M-file, and enter - function dydtfirst_order(t,y)
- dydt-0.05y(1) 0.05y(1)
- Save m-file
- Switch back to Matlab command window
- Enter
- t,yode45(_at_first_order,0100,1 0)
- plot(t,y)
- y is a 101 x 2 matrix
- 101 different time points
- 2 different chemical species
14Differential Equation Solver in Matlab Second
Order Kinetics
- In Matlab command window, select File, New,
M-file, and enter - function dydtsecond_order(t,y)
- dydt-0.05y(1)y(2) -0.05y(1)y(2)
0.05y(1)y(2) - Save m-file
- Switch back to Matlab command window
- Enter
- t,yode45(_at_second_order,0100,1.1 1 0)
- plot(t,y)
- y is a 101 x 3 matrix
- 101 different time points
- 3 different chemical species
15Michaelis-Menten Kinetics
- Enzyme kinetics
- A B AB
- AB A C
- More commonly represented as
- E S ES
- ES E P
- Assumptions for Michaelis-Menten derivation
- ES reaches a steady state concentration
- Rate of E P ? ES is neglible
- ES ? E P is the rate limiting step
k1
k2
k3
k1
k2
k3
16Steady State Assumption
k1
k3
k2
17Session 2
- Creating chemical kinetic models
- Enzyme kinetics
- Model fitting
18Benzoapyrene Metabolism Network
k7
Qn
k5
k10
k11
2,3 ox
3-OH
1A1BP
1A1inact
k19
k8
k2
k10
4,5 diol
EH4,5 ox
4,5 ox
k1
BP
k25
k27
k13
1A1
k13
k16
1A19,10 diol
7,8 ox
k10
k14
unk
EH
EH7,8 ox
1A1inact
k3
k4
k18
k17
k6
k10
9,10 ox
k21
1A17,8 diol
k15
k26
k9
EH9,10 ox
diol-ox2
diol-ox3
9-OH
k22
k12
k28
k24
9,10 diol
tetrol
7,8 diol
k23
k29
unk
Gautier, J. C. Urban, P. Beaune, P. Pompon, D.
Chem. Res. Toxicol. 1996, 9, 418-425.
k30
19Improving the model
- Fit model to data
- Optimize rate constants
20Steady State Assumption
k1
k3
k2
21Exercise 2
- Determine the initial rate for the following
conditions using the Michaelis-Menten formula - So 1.0 ?M 50 ?M Eo 0.03 ?M
- ESo 0 Po 0
- KM 10 ?M vmax 15 nmol/nmol E/min
- Plot vinitial vs. So
22Implementing a Kinetic Model
23Implementing a Kinetic Model
24Implementing a Kinetic Model
25Implementing a Kinetic Model
26Implementing a Kinetic Model
27Implementing a Kinetic Model
Oni
1
0
0
O
0
1
0
- 1
0
Rmj
1
-1
R
0
1
E. Bezemer, S. C. Rutan, Chemom. Intell. Lab.
Systems, 59, 19-31, 2001
28Exercise 3
- Combine all kinetic model related variables into
a structure - kinetics.order O
- kinetics.states R
- kinetics.k k1 k2
- initial_conc Ao Bo Co
-
- t,yode45(_at_kinfun,times,initial_conc,
,kinetics) - plot(t,y)
29Simulated Kinetic Profiles
k1 k2 0.5
1
C
0.8
A
0.6
Relative Concentration
0.4
B
0.2
0
2
4
6
8
10
Reaction Time
30Optimizing the Kinetic Model
- 1. Set initial rate constants
- 2. Simulate kinetic model
- 3. Calculate difference between simulated model
and ALS resolved kinetic profile - 4. Change rate constants
- 5. Go to step 2 unless fit is good enough
31Simplex optimization
1
2
3
Parameter 2
Parameter 1
32Simplex optimization
1
2
3
Parameter 2
4
Parameter 1
33Simplex optimization
1
2
3
Parameter 2
4
5
Parameter 1
34Simplex optimization
1
2
3
Parameter 2
4
5
6
Parameter 1
35Simplex optimization
1
2
3
Parameter 2
4
7
5
6
Parameter 1
36Optimizing the Kinetic Model
- 1. Set initial rate constants
- 2. Simulate kinetic model
- 3. Calculate difference between simulated model
and ALS resolved kinetic profile - 4. Change rate constants
37Exercise 4
- Create a function that determines the fit quality
of the model - Function fit_qualfit_model(rates,data,model)
- model.krates
- t,yode23tb(_at_kinfun,010,1 0 0, ,model)
- fit_qualsum(sum(y-data).2))
- Fit the data using this function
- Opt_ratesfminsearch(_at_fit_model,.1 1,1 0
0,,y,kinetics)
38Improving the model
- Fit model to data
- Optimize rate constants
39Exercise 5
- Set up the states and orders matrices for
Michaelis-Menten kinetics. - Calculate the time-dependent profiles for the
species E, S, P, ES for the following conditions - So 1.0 ?M Eo 0.03 ?M ESo 0 Po 0
- k1 0.6 ?M-1min-1 k2 5 min-1 k3 0.3 min-1
- Plot a Michaelis-Menten plot for vinitial vs. S
- So 1 50 ?M
40Metabolism and the Liver
- Liver key organ for processing xenobiotic
compounds - Environmental toxins
- Pharmaceuticals
- Contains many different types of enzymes
- Cytochrome P450
- Several genetic variants
- Responsible for oxidation of numerous types of
function groups - Epoxide hydrolase
- Converts epoxides to diols
41Benzoapyrene Metabolism Network
k7
Qn
k5
k10
k11
2,3 ox
3-OH
1A1BP
1A1inact
k19
k8
k2
k10
4,5 diol
EH4,5 ox
4,5 ox
k1
BP
k25
k27
k13
1A1
k13
k16
1A19,10 diol
7,8 ox
k10
k14
unk
EH
EH7,8 ox
1A1inact
k3
k4
k18
k17
k6
k10
9,10 ox
k21
1A17,8 diol
k15
k26
k9
EH9,10 ox
diol-ox2
diol-ox3
9-OH
k22
k12
k28
k24
9,10 diol
tetrol
7,8 diol
k23
k29
unk
Gautier, J. C. Urban, P. Beaune, P. Pompon, D.
Chem. Res. Toxicol. 1996, 9, 418-425.
k30
42Reaction of Cytochrome 1A1 w/ BP
k1
- 1A1 BP 1A1?BP
- 1A1?BP 1A1 Qn
- Is really the same as
- E S ES
- ES E P
k2
k11
k1
k2
k3
43Dynamics for 1A1?BP
44Differential Equations for BP/1A1 Reactions
species X dX/dt
BP k21A1BP k101A1BP - k1BP1A1
1A1 k41A17,8-diol (k25 k30 k26)1A19,10-diol k91A17,8-diol k111A1BP k21A1BP (k5 k6 k7 k8)1A1BP - k11A1BP - k141A19,10-diol - k101A1 - k31A17,8-diol
1A1inactiv. k10(1A1 1A17,8-diol 1A1BP 1A19,10-diol)
1A1BP k1BP1A1 - (k5 k6 k7 k8 k2 k10 k11)1A1BP
4,5-ox k81A1BP k27EH4,5-ox - k164,5-ox - k13EH4,5-ox
7,8-ox k71A1BP k18EH7,8-ox - k207,8-ox - k13EH7,8-ox
9,10-ox k61A1BP k21EH9,10-ox - k13EH9,10-ox - k179,10-ox - k159,10-ox
3-OH k51A1BP
9-OH k159,10-ox
quinones k111A1BP
Gautier, J. C. Urban, P. Beaune, P. Pompon, D.
Chem. Res. Toxicol. 1996, 9, 418-425.
45Additional Differential Equations for BP/1A1/EH
Reactions
species X dX/dt
EH (k12 k21)EH9,10-ox (k18 k22)EH7,8-ox (k27 k19)EH4,5-ox k13EH (4,5-ox 7,8-ox 9,10-ox)
EH4,5-ox k134,5-oxEH - (k27 k19)EH4,5-ox
EH7,8-ox k137,8-oxEH - (k18 k22)EH7,8-ox
EH9,10-ox k139,10-oxEH - (k21 k12)EH9,10-ox
4,5-diol k19EH4,5-ox
7,8-diol k22EH7,8-ox k41A17,8-diol k101A17,8-diol - k31A17,8-diol
9,10-diol k12EH9,10-ox k251A19,10-diol k101A19,10-diol - k149,10-diol1A1
1A17,8-diol k31A17,8-diol - (k4 k9 k10)1A17,8-diol
1A19,10-diol k141A19,10-diol - (k25 k10 k26 k30)1A19,10-diol
DE2 k91A17,8-diol - (k23 k24)DE2
DE3 k261A19,10-diol - (k29 k28)DE3
T2-tetrol k24DE2 k28DE3
adducts k179,10-ox k207,8-ox k164,5-ox k23DE2 k29DE3 k301A19,10-diol
Gautier, J. C. Urban, P. Beaune, P. Pompon, D.
Chem. Res. Toxicol. 1996, 9, 418-425.
46Kinetic Constants for BP Model
Enzyme/substrate complexes Association constants (?M-1min-1) Dissociation constants (min-1) Products Catalytic constants (min-1) Products Nonenzymatic constants (min-1)
1A1BP k1 30 k2 100
2,3-ox k5 14
4,5-ox k8 0.7 adducts k16 0.004
7,8-ox k7 10 adducts k20 0.018
9,10-ox k6 10 adducts k17 0.1
9-OH k15 0.3
quinones k11 5.2
1A17,8-diol k3 40 k4 100
DE2 k9 85 adducts k23 60
T2-tetrol k24 30
1A19,10-diol k14 26 k25 100
DE3 k26 4.5 adducts k29 40
T2-tetrol k28 60
adducts k30 15
mEH4,5-ox k13 180 k27 100
4,5-diol k19 23
mEH7,8 ox k13 180 k18 100
7,8 diol k22 11.5
mEH9,10 ox k13 180 k21 100
9,10 diol k12 7.5
Gautier, J. C. Urban, P. Beaune, P. Pompon, D.
Chem. Res. Toxicol. 1996, 9, 418-425.
Inactivation constant k10 0.022 min-1
47Reaction Profiles for Major ProductsInitial
Concentrations BP 5 ?M 1A1 0.0058 ?M
EH 0.10 ?M
5
4.5
4
3.5
3
Concentration (?M)
2.5
2
1.5
1
0.5
0
0
20
40
60
80
100
120
140
160
180
200
Time (min)
48Reaction Profiles for Major ProductsInitial
Concentrations BP 5 ?M 1A1 0.0058 ?M
EH 0.10 ?M k10 0
5
4.5
4
3.5
3
2.5
Concentration (?M)
2
1.5
1
0.5
0
0
20
40
60
80
100
120
140
160
180
200
Time (min)
49Reaction Profiles for IntermediatesInitial
Concentrations BP 5 ?M 1A1 0.0058 ?M
EH 0.10 ?M k10 0
50Reaction Profiles for IntermediatesInitial
Concentrations BP 5 ?M 1A1 0.0058 ?M
EH 0.10 ?M k10 0
tetrol
51Exercise 6
- Start Matlab, and type the following commands
- load bap_model
- t,yode23tb(_at_kinfun,0200,initial_conc,,kine
tics) - Choose one of the reactions in the BP metabolism,
and vary the rate constant by 50 , 10 , -10
and -50 and determine which species profiles
are most affect by these changes. Use the excel
spreadsheet bap_model.xls to determine the
position of the different species and terms in
the matrices.