Epoch of Reionization / 21cm simulations - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Epoch of Reionization / 21cm simulations

Description:

Epoch of Reionization 21cm simulations – PowerPoint PPT presentation

Number of Views:39
Avg rating:3.0/5.0
Slides: 17
Provided by: stevetor
Category:

less

Transcript and Presenter's Notes

Title: Epoch of Reionization / 21cm simulations


1
Epoch of Reionization / 21cm simulations
  • Mário Santos
  • CENTRA - IST

2
21cm signal - simulation
Sky simulation (º 87 MHz)
Ionization fraction (º 87 MHz)
  • Brightness temperature maps (21cm HI line)
  • Post-processing with fast semi-numerical
    prescription to get spin temperature (Santos et
    al., 2008, ApJ, 689, 1)
  • Dark matter / radiative transfer simulation 100
    Mpc/h side, (720)3 cells, 24 billion particles
    (Shin et al., 2007, ArXiv e-prints, 708)

3
21cm signal - simulation
Sky simulation (º 87 MHz)
Ionization fraction (º 87 MHz)
  • 21cm signal
  • TS HI spin temperature depends on collisional
    coupling, Ly coupling, gas temperature (X-ray
    heating)

4
21cm simulation Ly fluctuations
z20
mK
  • Top left Sky simulation with homogeneous Ly
  • Top right Sky simulation with Ly fluctuations
  • Bottom - left power spectrum of the Ly photon
    flux
  • Important for z 15
  • Dominates over collisions up to z22

5
21cm simulation X-ray fluctuations
z15
mK
  • Top left sky simulation with homogeneous X-ray
    heating
  • Top right sky simulation with fluctuations in
    the gas temperature due to X-rays
  • Bottom left power spectrum of the gas
    temperature
  • Important for z gt 10!

6
EoR / 21cm sky simulation
  • Brightness temperature maps
  • Box size - 100 Mpc/h (50) (7 MHz)
  • Box resolution - 139 Kpc/h (4) (10 KHz)
  • 6 lt z lt 25 (55 MHz lt º lt 203 MHz)
  • Available for SKADS use

Santos et al., 2008, ApJ, 689, 1
7
21cm signal redshift evolution
  • Average temperature
  • Top Spin (dotted) gas (red dashed) CMB (solid)
  • Bottom brightness temperature with all
    fluctuations (black) and without x-ray
    fluctuations (red)
  • Power spectrum evolution
  • Signal increases with redshift! (up to z 16)

8
Power spectrum
  • Expected range measured by SKA
  • Expected range measured by 1st generation
    experiments (e.g. LOFAR)

9
Power spectrum - errors
  • Tsky 1215 K _at_ 100 MHz
  • Bandwidth 8 MHz per redshift
  • ttot1000 hours
  • Blue (SKA type)
  • Aeff4000 m2/K _at_ 100 MHz
  • FoV 200 deg2
  • Dmax5 Km (with 70 of Aeff)
  • Dmin15 m
  • Green (LOFAR type)
  • 130 m2/K _at_ z6 (º203 MHz)
  • FoV 18 deg2 (x2)
  • Dmax1 Km (with 80 of Aeff)
  • Dmin100m
  • Red solid line brightness temperature 3-d power
    spectrum with all fluctuations included
  • Dashed lines total error in the power spectrum
    bins0.5k

10
Map making - 1
Signal Noise
Signal
T (mK)
z7, º177 MHz, º2 MHz, µ1 degree, µ35
z7, º177 MHz, µ1 degree, µ9
11
Map making - 2
Signal
Signal Noise
T (mK)
Z9.2, º140 MHz, º2MHz, µ32, µ46
Z9.2, º140 MHz, µ32, µ4.8
12
Map making - 3
Signal
Signal Noise
T (mK)
z12, º110 MHz, º2 MHz, µ32, µ0.94
z12, º110 MHz, µ32, µ4.8
13
Note SKA Field of View
  • Need larger simulations for proper testing of the
    observation pipeline
  • Use semi-numerical dark matter simulation with
    analytical prescription for ionized bubbles (in
    preparation)
  • Also good for fast power spectrum generation

200 degree2
50
Fast semi-numerical dark matter / ionized bubbles
simulation
21cm simulation
14
Analytical models xi power spectrum
  • Useful to quickly explore the full astrophysical
    and cosmological parameter space for 21cm
    surveys!
  • Easy to probe both large and small scales
  • Left power spectra of the ionization fraction
    (divided by the dark matter one)

15
Analytical models 21cm power spectrum
  • Power spectra of the 21cm brightness temperature
    for the simulation (black) versus one
    semi-analytical model
  • OK for z lt 10 (e.g. first generation experiments)
  • At z10 (SKA) X-ray and Ly fluctuations are
    important need further improvements

16
What can we learn?
  • Probe a crucial step in the evolution of the
    Universe - formation of first non-linear
    structures (first stars and galaxies)
  • Complex Reionization history 6 lt z lt20 !
    (currently very little experimental data)
  • Astrophysical parameters xi, Ly flux, gas
    temperature, star formation, photon escape
    fraction
  • Cosmological parameters ?, ?mh2, ?bh2, ns,
    neutrino mass

Mao et al, PRD 78, 023529 (2008)
McQuinn et al, ApJ 653, 815 (2006)
Write a Comment
User Comments (0)
About PowerShow.com