Lecture 9 Motion Perception - PowerPoint PPT Presentation

1 / 63
About This Presentation
Title:

Lecture 9 Motion Perception

Description:

(1) fixating a point in a static environment. no eye movements, ... (i.e. below 60 Hz, we can detect flicker) 30 Hz is usually adequate min. for foveal vision ... – PowerPoint PPT presentation

Number of Views:445
Avg rating:3.0/5.0
Slides: 64
Provided by: stanleyj
Category:

less

Transcript and Presenter's Notes

Title: Lecture 9 Motion Perception


1
Lecture 9 - Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

2
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

3
Conditions for Motion Perception
  • is retinal image motion enough to see motion?

4
Conditions for Motion Perception
  • (1) fixating a point in a static environment
  • no eye movements, no target motion
  • (no retinal image motion --gt no motion perceived)
  • (2) fixating a point while a target passes
  • no eye movements, moving target
  • (retinal image motion --gt motion perceived)

5
Conditions for Motion Perception
  • (3) moving eyes in static environment
  • eye movements, no target motion
  • (retinal image motion --gt no motion perceived)
  • (4) tracking a moving target
  • eye movements, target motion
  • (no retinal image motion of target --gt motion
    perceived) 

6
Conditions for Motion Perception
  • (5) passive eye movements - no command from brain
  • eye movements, no target motion
  • (retinal image motion --gt motion perceived)
  • (because this is normally whats seen in a static
    environment - see 2, above)
  •  

7
Conditions for Motion Perception
  • (6) paralysis of e.o. muscles - command from the
    brain
  • no eye movements, no target motion
  • (no retinal image motion --gt motion perceived) 
  • (command to look left results in leftward motion
    percept, because normally this would cause an
    expectation of RW motion)

8
Conditions for Motion Perception
  • is retinal image motion enough to see motion?
  • No - we need to know whether eyes moved as well
  • See Table 9.1

9
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

10
Physiological Basis for Motion Perception
  • directionally-selective cells
  • selective adaptation
  • motion aftereffect
  • MT cells

11
Wiring Diagram for motion-sensitive cell
  • Slide 11

12
  • Slide 12 - individual neural responses

13
Selective Adaptation
  • motion aftereffect
  • populations of directionally-selective neurons
    (neural pools)
  • MT
  • MST

14
Selective Adaptation
  • motion aftereffect
  • Demo here
  • www.visionscience.com/demonstrations/
  • Motion Perception
  • MAE

15
  • Slide 15 - neural pools

16
  • Slide 16

17
(No Transcript)
18
  • Slide 18

19
  • Slide 19

20
  • Slide 20

21
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

22
Object Motion
  • motion perception thresholds
  • aperture problem

23
Minimum Motion Threshold
  • for change in position over time, (assume no eye
    movements)
  • for spots of light
  • lowest thresholds (ignore cognitive inference of
    movement - e.g. hands of a clock or sun's shadow)
  • 1-2 min arc/sec (with landmarks)
  • 10-20 min arc/sec (with no landmarks - i.e. gt 3
    deg away)

24
Maximum Motion Threshold
  • highest threshold (before fusion into a streak)
  • 30 deg/sec

25
Aperture Problem
  • Demo here
  • www.visionscience.com/demonstrations/
  • Motion Integration
  • Aperture Problem
  • Barberpole illusion
  • Occluded Terminators

26
  • Slide 26

27
  • Slide 27

28
  • Slide 28

29
  • Slide 29

30
Vector Averaging
  • Demos here
  • www.visionscience.com/demonstrations/
  • Motion Perception
  • Plaid

31
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

32
Structure From Motion
  • organization of components into a meaningful
    whole
  • biological motion
  • random dot patterns (again)
  • relative motion

33
Biological Motion
  • recognition of living forms
  • good example of top-down influence in
    perception
  • i.e. human form is very familiar

34
  • Slide 34

35
  • Slide 35

36
Biological Motion
  • Demo here
  • www.visionscience.com/demonstrations/
  • Motion Perception
  • Biological Motion

37
Structure from Motion
  • Slide 37

38
Random Dot Kinematograms
  • Slide 38

39
Structure from Motion
  • Demo here
  • www.visionscience.com/demonstrations/
  • Motion Perception
  • Kinetic Depth

40
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

41
Apparent Motion
  • correspondence problem
  • animation

42
Apparent Motion
  • Exners spark experiment
  • Demo here
  • www.visionscience.com/demonstrations/
  • Magni-phi
  • Custom simpli-phi

43
  • Slide 43

44
  • Slide 44

45
Animation
  • critical flicker frequency (CFF)
  • 60 Hz
  • (i.e. below 60 Hz, we can detect flicker)
  • 30 Hz is usually adequate min. for foveal vision

46
  • Slide 46

47
Animation
  • Demo here
  • www.visionscience.com/demonstrations/
  • Motion Perception
  • Four-Stroke Apparent Motion

48
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

49
Motion In Depth
  • self motion
  • optic flow field
  • expansion as motion in depth (looming)
  • neural basis

50
Self Motion
  • Slide 50

51
Optic Flow Field
  • Slide 51

52
Object Motion
  • Slide 52

53
  • Slide 53

54
  • Slide 54

55
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

56
Eye Movements
  • disjunctive - for fixation in depth
  • convergence, divergence
  • conjunctive (conjugate)
  • smooth pursuit eye movements
  • saccades
  • saccadic suppresion
  • microsaccades

57
Monitoring Saccades for Suppresion
  • Slide 57 - see textbook Fig. 8.8

58
Why do we Move our Eyes?
  • 1) shifts in attention
  • 2) because of fovea
  • functional fovea
  • drift during fixation 2.5 arc min over 60 sec
    time period
  • dead zone 5 - 15 min.

59
Physiology
  • 2 visual pathways
  • dorsal more reflexive
  • coarse, practical spatial encoding of location
  • ventral more cognitive
  • fine, thoughtful spatial encoding of detail

60
Measuring Eye Position
  • Yarbus
  • search coil
  • non-contacting methods

61
Motion Perception
  • Conditions for Motion Perception
  • Physiological Basis for Motion Perception
  • Object Motion
  • Structure from Motion
  • Apparent Motion
  • Motion-in-Depth
  • Eye Movements
  • Visual-Vestibular Interactions

62
Visual-Vestibular Interactions
  • vestibular apparatus
  • balance
  • motion sickness

63
  • Slide 63
Write a Comment
User Comments (0)
About PowerShow.com