Title: Aerosol and chemical transport in tropical convection ACTIVE
1Aerosol and chemical transport in tropical
convection ACTIVE
- Geraint Vaughan
- University of Manchester, UK
- on behalf of the ACTIVE team
2The Consortium
- University of Manchester
- University of Cambridge
- University of York, UK
- York University, Canada
- DLR, Oberpfaffenhofen, Germany
- FZ Julich, Germany
- NCAR, Boulder, USA
- Australian Bureau of Meteorology
- Airborne Research Australia
- NERC Airborne Research Facility
3Scientific problems
- How does air get to the Tropical tropopause layer
(TTL)? By large-scale transport or by rapid
convective uplift? What is the partitioning
between these sources? - How much, and what kind of aerosol, reaches the
TTL in deep convection? - How does this aerosol affect the development of
cirrus clouds in the TTL?
4Objectives
- Relate measurements of aerosols and chemicals in
the TTL to low-level sources. - Determine how deep convection modifies the
aerosol population reaching the TTL, and thus
evaluate its impact on cirrus nucleation. - Determine the relative contribution of convection
and large-scale transport to the composition of
the TTL over Darwin. - Compare the effects of monsoon and pre-monsoon
convection on the composition of the TTL. - Determine the contribution of deep convection to
the NOx and O3 budget in the TTL - Measure how much black carbon reaches the outflow
regions of the storms.
5Field campaign in Darwin
Graphic courtesy of TWP-ICE
6Airborne measurements for ACTIVE
Ozonesondes (profiles)
ARA Egrett, 10 - 15 km
NERC Dornier 0-5 km
7Egrett payload
Basic Meteorology and position Pressure, temperature, wind (1 Hz), GPS
DMT Single Particle Soot Photometer (SP-2) Aerosol particle size distribution (0.2 1.0 µm), light absorbing fraction (LAP), carbon mass, metal
2 x TSI-3010 Condensation Particle Counter (CPC) Total condensation particles gt 40 nm gt 80 nm
DMT Cloud, Aerosol Precipitation Spectrometer (CAPS) Cloud Droplet psd, aerosol/small particle assymetry, aerosol refractive index,large ice psd, (0.3ltDplt3,200 µm), Total Liquid Water Content
DMT Cloud Droplet Probe (CDP) Particle Size Distribution (2lt Dplt60 µm)
SPEC Cloud Particle Imager CPI-230 Cloud particle/ice CCD images, (30 lt Dplt 2,300 µm)
Buck Research CR-2 frost point hygrometer Temperature, dew/ice point, 20 s, ? 0.1?
2X Tunable diode laser Hygrometer (SpectraSensors) Water vapour, 2 Hz, ? 0.005 ppmv precision
Julich CO analyser High precision ( 2 ppb), fast response (10 Hz) CO
Cambridge Miniature Gas-Chromatograph Halocarbons (Cl, Br, I), 3-6 min, ? 5
TE-49C UV Ozone sensor Ozone concentration ( 1 ppbv, 10 seconds)
Adsorbent tube carbon trap C4-C9 aliphatics, acetone, monoterpenes
NO and NO2 chemiluminescent detector ? 200 ppt _at_ 10 Hz ? 30 ppt _at_ 4 s integration
alternates
Chemistry
Met/Position
Aerosol
Humidity
Cloud Physics
8Dornier payload
Basic meteorology Aventech probe ARSF/Manchester
Position/Timing GPS ARSF
Aerosol Mass Spectrometer Aerosol compositionn, 30 2000 nm Manchester
Condensation particle counter Aerosol concentration gt 10 nm Manchester
Grimm Optical Particle Counter Aerosol size distribution, 0.5 20 µm Manchester
Ultra high sensitivity aerosol spectrometer Aerosol size distribution 50 nm 2 µm Manchester
Aerosol spectrometer probe Aerosol size distn, 0.1 1 µm Manchester
FSSP Aerosol, size ( 2- 47 µm) Manchester
Filters Coarse aerosol composition Manchester
Ozone UV absorption, 2B York
CO AL5003 York
VOC Adsorbent tubes York
NO/NOx Chemiluminescence/catalysis York
Halocarbons DIRAC gas chromatograph Cambridge
Black Carbon PSAP DLR
Chemistry
Met/Position
Aerosol
9Experiment Plan two campaigns
16 Jan-17 Feb 2006 concentrating on monsoon and
continental convection. With TWP-ICE
US/Australian campaign to study cirrus clouds and
convection using multiple aircraft and
ground-based instruments
7 Nov- 10 Dec 2005 concentrating on HECTOR. With
SCOUT-O3 European campaign to study TTL and TLS
using DLR Falcon and Russian Geophysika.
10Campaign 1
Nov
13 ED 14 15 ED 16ED GF 17 18 19 D GF
20 21 22 23 D GF 24 D 25 26
27 E 28 D F 29 GF 30ED GF(2) 1 ED 2 3 E
4 ED 5 ED GF 6 E 7 8 E 9 E 10 E
Dec
Test Survey Hector Mixed
survey/Hector
Single-cellular Hector
Multi-cellular Hector
Mini-monsoon
11Campaign 2
Jan 16 17 18 19 D 20ED 21
22ED T 23 E T 24 25 ED PT 26 D 27 ED PT 28
29 30 D 31 E 1 ED 2 D 3 ED 4
5 6 ED PT 7 8 ED T 9 D T 10ED PT 11
12 ED PT 13 E 14 ED 15 E 16 17 Feb
Test Survey Hector Monsoon Aged
anvil Lidar
Monsoon trough
Inactive Monsoon
Westerly Monsoon
Single-cellular Hector
Multi-cellular Hector
12Evolution of Egrett CO profiles during ACTIVE
Data from A. Volz-Thomas and W. Pätz
1316 Nov 2005
1700
15.45
Satellite data from BoM, aircraft tracks by G.
Allen
14Cloud particles CAPS
Cloud imaging probe large particles
Data A. Heymsfield and A. Bansamer
Cloud and aerosol spectrometer small particles
15Cloud Particle Imager
Data P. Connolly
16Dornier CO and aerosol, 16/11/05
Data from J. Hamilton, M. Flynn and P. Connolly
17Dornier CO and aerosol, 8/2/05
Data from J. Hamilton, M. Flynn and P. Connolly
18Chemical Equator flight 3/2/06
CO in ppbv, Aerosol gt 300 nm in cm-3
Data from J. Hamilton, M. Flynn and P. Connolly
19Summary
- Around 30 flights with each aircraft in and
around tropical convection - Inflow conditions change from polluted early in
November (smoke from biomass burning) to very
clean in Jan/Feb - Hectors observed in polluted and clean regine
- Monsoon convection observed in the second half of
January
20(No Transcript)
21The Consortium
University of Manchester Geraint Vaughan
(PI), Tom Choularton, Hugh Coe Martin
Gallagher, Keith Bower University of Cambridge
John Pyle, Neil Harris, Peter Haynes,
Rod Jones University of York (UK) Ally
Lewis York University (Toronto) Jim
Whiteway DLR (Germany) Reinhold Busen FZ
Julich, Germany Andreas Volz-Thomas NCAR,
Boulder Andy Heymsfield Australian Bureau of
Meteorology Peter May Airborne Research
Australia Jörg Hacker
22Summary of flights
Campaign 1
Campaign 2
15
13
Egrett
Dornier
15
12
O3sondes 23 8
23Summary
Campaign 1
Campaign 2
- 7 Egrett Hector flights (3 NOX, 4 aerosol)
- 2 Egrett cirrus flights (1 NOx, 1 aerosol)
- 1 Egrett survey (aerosol)
- 3 Egrett test flights
- 7 Dornier convection flights
- 3 Dornier survey flights
- Intercomparison leg
- 2 Dornier test flights
- 23 ozonesondes
- 2 Monsoon anvil flights (1 NOx, 1 aerosol)
- 5 Egrett Hector flights (2 NOX, 3 aerosol)
- 3 Egrett cirrus flights (1 NOx, 2 aerosol)
- 4 Egrett survey (1 aerosol, 2 lidar, 1 transit)
- 1 Egrett calibration flight
- 7 Dornier convection flights
- 7 Dornier survey flights
- Intercomparison flight
- 1 Dornier test flights
- 8 ozonesondes
24Aircraft ACTIVE, TWP-ICE, SCOUT-O3
Max ht
M-55 Geophysica In situ microphysics, chemistry
21 km
ARA Egrett In-situ microphysics, aerosol,
chemistry NASA/DOE ProteusRemote sensing,
in-situ
15 km
15 km
DLR Falcon in-situ, remote sensing
11 km
King Air Upward-looking radar and lidar
9 km
NERC Dornier in-situ, aerosol, chemistry,
5 km
ARA Dimona Fluxes, BL structure
3 km
25Modelling plan
In Situ measurements
Radar reflectivity
Tracer fields (e.g. CO)
CRM
Cloud microphysics
EMM
Low-level aircraft
Clo
Cloud microphysics Aerosol Active gases (O3, NOx)
MAC
Large-scale fields
TOMCAT
Comparison with data
Large-scale fields (fine structure)
TRAJ
Input
Output
26Modelling
Large scale modelling p-TOMCAT 3D CTM with
detailed chemistry run at, say, 0.5?x0.5? Air
parcel trajectory model Transport into/out of
TTL Large scale structure of TTL Role of
lightning NOx on TTL ozone Modelling individual
storms MetOffice CRM UMIST ?physics (EMM)
?physicsof anvils for comparison with
data Fluxes of particles, tracers thro
clouds Microphysics, Aerosols Chemistry
(MAC) More explicit size-resolved aerosol NOx
production in lightning