Title: Periodic sources of gravity waves
1Periodic sources of gravity waves
Sipho van der Putten
2Contents
- Hulse-Taylor
- Pulsars gravitational waves from periodic
sources - Isolated pulsars
- Pulsars in binary systems
3Hulse - Taylor
- Hulse-Taylor (1974) binary PSR B191316
- Neutron star star (1.4 Msolar)
- Period 7.75 h
- Indirect detection of GWs
- Change in period over time and calculated from GR
the energy loss - Nobel prize 1993
- Direct detection VIRGO
4Periodic sources of gravity waves
5Periodic sources of gravity waves
- Pulsars spinning neutron stars
- Emitting GWs requires quadrupole moment
symmetry axis is not rotation axis - Strain (hdL/L) measured on earth
e Ellipticity ltlt 10-5 I3 3rd component moment
of inertia
hNS 10-27 Sensitivity 10-22
6Low amplitude, but
- Periodic signal ? Integrate over time
- Fourier transform
- hNS 10-27 ? 10-24
- Many neutron stars unknown and they can be
nearby 2 kpc (Crab pulsar) - hNS 10-24 ? 10-23
- All sky search
- 5 parameters
e.g. Neutron star rotating at 100 Hz and
observing it for 1 day gives a factor of 3x103
7Isolated pulsars simulations
- Simulated signal
- A(t) Amplitude modulation ? Detector acceptance
- F(a,d,t) Phase modulation ? Doppler shift,
spindown - Add simulated signal to detector output
- Reconstruct position amplitude of source
- Todo Reconstruct more realistic pulsars (h ?
10-27) - More involved analysis
hrec
8Neutron stars in binary systems
9Neutron stars in binary systems
- 2/3 of NS (fgt10Hz) in a binary system
- Mass transfer
- Spin-up f increases
- e increases (model dependent)
- 9 Search parameters
- Doppler shift due to orbit of binary system
10Analysis binaries spectral filtering
- Non stationary frequency FFT ? power spread out,
bad S/N - Spectral filtering Identify the signal in the
data
11Templates for binaries
- Spectral filtering spread of power can be
compensated - Calculate expected signal
- Velocity of the detector relative to the SSB
- Velocity component of the binary in the direction
of the detector - Fourier transform calculated signal ? Template
- Own model
- Simulation package (R. Ebeling)
- Todo template search
- Template spacing 9 parameters !
- Computing power needed ? GRID
12Conclusions Outlook
- Isolated pulsars
- Simulations done/understood
- Analysis needs to be refined
- Binary pulsars
- Simulation in progress
- Conceptual approach to analysis spectral
filtering - Find the balance between FFT length and Template
spacing in terms of available CPUs - Developing GRID based analysis
13Backup slides
14Introduction to Gravitational Waves
- Ripples in space-time due to accelerating
masses distorting space-time - Two polarizations x
- Measured in strain hdL/L
- Extremely weak effects
- Supernova (10 kpc, 10 Msolar) h10-22
- Rotating deformed neutron star (10 kpc, 1
Msolar, 100 Hz) h10-27
15VIRGO
- VIRGO 3km Michelson interferometer with resonant
arm cavities - Sensor (photodiode) tuned on dark fringe
- Gravitational wave
- Detector output
16Status of VIRGO
17Status of VIRGO
18(No Transcript)
19Parameters Hulse Taylor
- PSR B191316
- Right ascension19h 13m 12.4655s
- Declination16Â 01'Â 08.189?
- AstrometryDistance21,000 ly (6.5 kpc)
- Mass1.441 Msolar
- Radius1.410-5
- Pulsar period 59.02999792988 ms
- Mass of companion 1.387 MSun
- Orbital period 7.751939106 hr
- Eccentricity 0.617131
- a1 sin i 2.34 LS
- Semimajor axis 1,950,100 km
- Periastron separation 746,600 km
- Apastron separation 3,153,600 km
- Orbital velocity of stars at periastron (relative
to center of mass) 450 km/sec - Orbital velocity of stars at apastron (relative
to center of mass) 110 km/sec
20Detected frequency HT over 1 year
21Signal smearing
- Doppler shift power spread out over various
frequency bins ? Lower S/N - Get the signal back in 1 bin ? Adjust FFT length
- Isolated pulsars
-
- HT 7.4h ? 37 µHz
- J0034-0534 4800 s ? 208 µHz
- Binary pulsars
-
- HT 268 s ? 3.7 mHz
- J0034-0534 800 s ? 1.2 mHz