Title: Rekonstruktionsmetoder inom PET
1Rekonstruktionsmetoder inom PET
- Anna Olsson
- Sjukhusfysiker
- Nuklearmedicin, Linköping
- anna.olsson_at_lio.se
2Tomografiska Rekonstruktionsmetoder
- Analytiska (t.ex. FBP)
- Iterativa
- Algebraiska
- Statistiska
- Poisson (t.ex.. ML-EM)
- Least squares
3Insamlingsdata 2D, 3D
- 3D ?2D (rebinnig)
- Fully 3D
- List mode
2D
3D
Timothy Turkington, Ph.D. Department of
Radiology, Duke University Medical Center,
Durham, North Carolina, USA
4Insamling och Rekonstruktion
Data Acquisition
Reconstructed Image
Sinogram (raw data)
Timothy Turkington, Ph.D. Department of
Radiology, Duke University Medical Center,
Durham, North Carolina, USA
5Analytiska metoder
62D FBP
Zeng GL, Comput. Med. Imag. Graph. 2597-103,
2001.
7Convolution kernel
Kak AC, Slaney M, Principles of Computerized
Tomographic Imaging, 1988.
8The Ramp filter
Kak AC, Slaney M, Principles of Computerized
Tomographic Imaging, 1988.
9The Fourier slice theorem
Kak AC, Slaney M, Principles of Computerized
Tomographic Imaging, 1988.
10Frequency domain mapping
Kak AC, Slaney M, Principles of Computerized
Tomographic Imaging, 1988.
11The Ramp filter
Kak AC, Slaney M, Principles of Computerized
Tomographic Imaging, 1988.
12Reconstruction filter
Bendriem B, Townsend DW, The theory and practice
of 3D PET, 1998.
132D filtered backprojection (2D-FBP)
- where p(?) projection data (2D), h1(?)
kernel (1D), f(?) image (2D), ?
projection angle, e?? unit vector
perpendicular to direction of projection,
? convolution operator.
14Reconstruction demo
Zeng GL, Comput. Med. Imag. Graph. 2597-103,
2001.
153D filtered backprojection (3D-FBP)
- where p(?) projection data (4D), h2(?)
kernel (2D), f(?) image (3D), e?,? unit
vector in direction of projection, ?
convolution operator.
16Missing data
173D FBP - The reprojectionalgorithm3DRP
Bendriem B, Townsend DW, The theory and
practice of 3D PET, 1998.
18Rebinning 3D?2D projection data
z
z
3D Recon
2D Recon
19Rebinning algorithms
Single slice rebinning
Fourier rebinning
20Fourier rebinning
Defrise M et al., IEEE TMI 16145-158, 1997.
21Iterativa metoder
22Byggstenar
- Data model
- Image model
- Cost function
- Iterative algorithm
23Byggstenar
- Data model
- Image model
- Cost function
- Iterative algorithm
24Byggstenar
- Data model
- Image model
- Cost function
- Iterative algorithm
25ML-EM Maximum likelihood expectation
maximization(Shepp Vardi 1982, Lange Carson
1984)
Uppmätta projektioner
BP av ( )
Normerad
Bild(k1)
Bild(k)
Projektioner av bilden(k)
Cost function poisson likelihood
Bra beskriven av Bruyant, JNM 2002
26OS-EM Ordered Subset Expectation Maximization
(Hudson Larkin, IEEE TMI 1994)
ML-EM
OS-EM
Sn data subset
27OSEM problem
- Subset imbalance
- Convergence problem
xn
xk
arg max f1(x)
x
arg max f2(x)
Fessler, IEEE MIC 2001
28Rescaled block iterative EMML (RBI - EMML)
(Byrne, IEEE TIP 1996)
- Removes subset imbalance.
29Row action maximum likelihood algorithm (RAMLA)
(Browne De Pierro, IEEE TMI 1996)
- where ?k is a relaxation parameter 0 lt ?k ?
1 k ? ? ? ?k ? 0 ? ?k ?
30EM reconstruction
1 2
5
comparison with projections
10 15
20
50 100
150
comparison with actual object
Courtesy Brian Hutton, UCL London
31Regularisation
- Regularisation (noise reduction)
- stop early
- stopping criteria based on statistical hypothesis
testing - filtering
- post-reconstruction or between-iterations
- penalised cost function
- Bayesian methods
- Bayesian methods
- maximum a posteriori (MAP) or penalised methods
- Penalty function
- quadratic, Huber, median
- Structural information
- avoid smoothing across anatomical boundaries
32MAP
penalty function (quadratic)
- regularisation parameter (hyperparameter)
- Nj neighbourhood of voxel j
- ?l weight factors
Bra beskriven av Bruyant, JNM 2002
33Penalty functions
Fessler, IEEE MIC 2001
34Maximum a-posteriori (MAP)
Quadratic Huber
35Iterative algorithms
- Advantages
- physical model of measurement
- Normalization (detector efficiency)
- Randoms (measured)
- Scatter (model)
- Attenuation (transmission scan)
- statistical model of measurement (Poisson)
- a priori information (non-negativity)
- structural information (from CT/MRI)
- incomplete data set (limited angle, truncation)
- Disadvantages
- complexity (modelling)
- computation time
- non-linearity f(ab) ? f(a) f(b)
- Result depends on statistics and activity
distribution!
36Vad har vi lärt oss idag?
- 2D FBP
- 3D FBP
- MLEM
- OSEM
- RBI EMML
- RAMLA
- MAP
37SLUT