Perfect Non-interactive Zero-Knowledge for NP - PowerPoint PPT Presentation

About This Presentation
Title:

Perfect Non-interactive Zero-Knowledge for NP

Description:

non-adaptive soundness - adaptive soundness (restrictions) ... Adaptive soundness problem - C satisfiable on ord(h) = q reference string ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 7
Provided by: jens173
Learn more at: https://www.iacr.org
Category:

less

Transcript and Presenter's Notes

Title: Perfect Non-interactive Zero-Knowledge for NP


1
Perfect Non-interactive Zero-Knowledge for NP
  • Jens Groth
  • Rafail Ostrovsky
  • Amit Sahai
  • UCLA

Will appear on ePrint archive shortly
2
Non-Interactive Zero-Knowledge
common reference string s
C(w)1 circuit C
P
V
proof/argument p
  • Problems
  • even computational NIZK inefficient
  • no statistical NIZK arguments for NP
  • no UC NIZK arguments for NP

3
Our contributions
  • Computational NIZK proof for Circuit SAT-
    O(k)-bit common reference string- O(Ck)-bit
    proofs
  • Perfect NIZK argument for Circuit SAT-
    non-adaptive soundness- adaptive soundness
    (restrictions)
  • Perfect zero-knowledge UC NIZK argument for
    Circuit SAT

4
BGN cryptosystem (TCC 2005)
Setup G group of order n pq bilinear map e G
? G ? G1 pk (n, G, G1, e, g, h) ord(g) n,
ord(h) q Additively homomorphic gm1hr1 gm2hr2
gm1m2hr1r2 Multiplication-mapping e(gm1hr1,
gm2hr2) e(g,g)m1m2e(h,gm1r2m2r1hr1r2) Decision
subgroup problem ord(h) q or ord(h) n ?
5
NIZK proof
NIZK for Circuit SAT (NAND-gates) BGN-encrypt
all wires NIZK proof 0 or 1 plaintexts - e(c,
cg-1) encrypts 0 NIZK proof encrypted bits
respect NAND-gates Zero-knowledge
simulation ord(g) ord(h) n gmhr is
perfectly hiding
6
Perfect zero-knowledge
Perfect NIZK argument ord(g) ord(h)
n Adaptive soundness problem - C satisfiable on
ord(h) q reference string - C unsatisfiable on
ord(h) n ref. string Solution restrict
ourselves to circuits of small size
so 2ClogCAdv-SD(k) is negligible
Write a Comment
User Comments (0)
About PowerShow.com