Title: Perfect Non-interactive Zero-Knowledge for NP
1Perfect Non-interactive Zero-Knowledge for NP
- Jens Groth
- Rafail Ostrovsky
- Amit Sahai
- UCLA
Will appear on ePrint archive shortly
2Non-Interactive Zero-Knowledge
common reference string s
C(w)1 circuit C
P
V
proof/argument p
- Problems
- even computational NIZK inefficient
- no statistical NIZK arguments for NP
- no UC NIZK arguments for NP
3Our contributions
- Computational NIZK proof for Circuit SAT-
O(k)-bit common reference string- O(Ck)-bit
proofs - Perfect NIZK argument for Circuit SAT-
non-adaptive soundness- adaptive soundness
(restrictions) - Perfect zero-knowledge UC NIZK argument for
Circuit SAT
4BGN cryptosystem (TCC 2005)
Setup G group of order n pq bilinear map e G
? G ? G1 pk (n, G, G1, e, g, h) ord(g) n,
ord(h) q Additively homomorphic gm1hr1 gm2hr2
gm1m2hr1r2 Multiplication-mapping e(gm1hr1,
gm2hr2) e(g,g)m1m2e(h,gm1r2m2r1hr1r2) Decision
subgroup problem ord(h) q or ord(h) n ?
5NIZK proof
NIZK for Circuit SAT (NAND-gates) BGN-encrypt
all wires NIZK proof 0 or 1 plaintexts - e(c,
cg-1) encrypts 0 NIZK proof encrypted bits
respect NAND-gates Zero-knowledge
simulation ord(g) ord(h) n gmhr is
perfectly hiding
6Perfect zero-knowledge
Perfect NIZK argument ord(g) ord(h)
n Adaptive soundness problem - C satisfiable on
ord(h) q reference string - C unsatisfiable on
ord(h) n ref. string Solution restrict
ourselves to circuits of small size
so 2ClogCAdv-SD(k) is negligible