Prsentation PowerPoint - PowerPoint PPT Presentation

1 / 95
About This Presentation
Title:

Prsentation PowerPoint

Description:

Prsentation PowerPoint – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 96
Provided by: imc63
Category:

less

Transcript and Presenter's Notes

Title: Prsentation PowerPoint


1
Titan à la lumière de la mission Cassini-Huygens
Athéna Coustenis Athena.coustenis_at_obspm.fr
Laboratoire dEtudes Spatiales et
dInstrumentation en Astrophysique
Observatoire de Paris-Meudon, France
2
Titan, un satellite exceptionnel
  • Satellite découvert le 25 mars 1655 par Huygens
  • Paramètres physiques
  • - R 2 575 km
  • - m 1,831 MLune
  • Paramètres orbitaux
  • - a 1 221 830 km 20 RSaturne
  • - P 15,95 j
  • - e 0,0292

3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
Ce quon apprit par Voyager 1 - N2 est le
constituent majoritaire - CH4 autres
hydrocarbures - H2 - nitriles - Peu doxygène
H2O, CO, CO2
7
Titan et la Terre
8
Titan vs la Terre
9
Titan la basse atmosphère et la surface restent
largement inconnues
Le problème du méthane où est le réservoir?
Le mystère de la surface quelle est sa
composition?
Océan global dhydrocarbures impossible car
démenti par -échos radar -effets de
marrées -spectres et images
10
Images de Titan par le HST
11
Quest-ce quon voit sur Titan ???
1.28 µm par VLT/NACO
12
La mission Cassini-Huygens
13
La mission Cassini-Huygens
Fonctions  Humaines  de Cassini-Huygens
14
Huygens et Cassini Hommes et machines
Christiaan Huygens (1629-1695) astronome amateur
Hollandais, découvrit les anneaux de Saturne et,
en 1655, sa plus grosse lune, Titan.
Giovanni Domenico Cassini (1625-1712), astronome
franco-italien, découvrit plusieurs satellites
kroniens Japet, Rhéa, Téthys et Dione. En 1675,
il découvre la Division Cassini le vide entre
deux anneaux majeurs de Saturne.  
15
Cassini observe Saturne 21 mars 1684,
Observatoire de Paris
16
Trajectoire
17
Le parcours
18
Le passage à travers les anneaux et linsertion
en orbite autour de Saturne
30 Juin / 1 Juillet 2004
19
Les anneaux en ultra-violet
20
Japet
Porco et al. 2005
21
Encelade et les jets deau
22
Encelade et son atmosphère deau
23
Encelade
  • Quelle est lorigine des panaches?
  • Des éjections de vapeur deau très loin du Soleil
    (implications pour les zones dhabitabilité)
  • Signes de présence de chimie organique

24
Espace vs sol en 2004-2005
25
SOURCES OF ORGANIC REACTANTS IN TITAN S
ATMOSPHERE
  • Gases that are already present in the atmosphere
    N2, CH4, H2
  • Pristine material deposited in the atmosphere by
    comets and interplanetary dust H2O, CH4, CO2,
    (NH3 ?),
  • Products of chemical processing of the
    atmosphere
  • Photolysis of CH4 N2 ? C2H6, other
    hydrocarbons, polymers, HCN Irradiation by
    energetic particles ? HCN, C2H2, hydrocarbons,
    nitriles
  • Plasma initiated chemistry (associated with
    lightning, cometary impacts) ? HCN, C2H2,
    hydrocarbons, nitriles, , aerosols

Cassini/INMS on Titan Waite et al
Thus, a wide variety of simple and necessary
organic species is available along with aerosols
for continued chemistry in Titans atmosphere.
26
(No Transcript)
27
Chimie organique sur Titan
Wilson and Atreya, JGR 2004
28
Des questions encore
  • Doù provient latmosphère de Titan?
  • - Azote ?
  • - méthane ?

29
N2 origin
NH3 primordial
N2 by
N2 primordial
thermal dissoc.
shock
photolysis
trapped in planetesimals
30
nitrogen formation
  • delivered as N2 trapped in ice - no
  • very small 36Ar, and no Xe, Kr detected
  • by impact dissociation of NH3 (McKay et al, 1988)
    - unlikely
  • unrealistic hydrocarbons (15 km haze) and H2 (4
    bar)
  • H2O short-circuits path to N2, but not included
  • photochemically, from NH3 (Atreya et al, 1978)
  • nitrogen arrived primarily as NH3 trapped in ice

31
isotopes
  • 12C/13CTitan 12C/13CEarth
  • 14N/15NTitanltlt 14N/15NEarth

methane replenishment
nitrogen escape
32
V1/IRIS
33
C2H2
HCN
C3H8
34
C2H6
C2H4
Coustenis et al., 2007c
35
Titan
The enhancement at the North pole is currently a
factor of 1.5-2 smaller than at the time of the
Voyager encounter for all molecules
Cassini CIRS (2004-5) Coustenis et al.
(2007) (N. winter)
Volume mixing ratio
36
Titan et les belles images de Cassini
ISS
Cassini/ISS 26 Octobre 2004 Image de Titan en
fausses couleurs Lat15S long156W
37
VIMS
38
VIMS
39
Titan images Cassini avec VIMS
VIMS
Lescargot Un cryovolcan?
Coustenis Athéna Titan et
la mission Cassini-Huygens
40
Titan images Cassini avec VIMS
VIMS
Coustenis Athéna Titan et
la mission Cassini-Huygens
41
Titan et les belles images de Cassini (suite)
RADAR
Cassini/Radar Image montrant une géographie
coulée et très Contrastée 1ère indication dune
possible ligne côtière au bord dun lac
Coustenis Athéna Titan et
la mission Cassini-Huygens
42
Cassini/RADAR/Titan
Les cratères par le RADAR de Cassini
Terre
43
Cassini/RADAR/Titan
Les dunes par le RADAR de Cassini
Terre/Namibie
44
Cassini/RADAR/Titan
Des rivières et des lacs au pôle Nord le
réservoir liquide manquant?
45
Les lacs sur Titan
Cassini radar
46
La sonde Huygens
47
3eme orbite autour de Saturne mission Huygens
48
319 kg
2.7 m
49
Cassini-Huygens la sonde
HASI DWE DISR GCMS ACP SSP
50
  • Huygens la descente et latterrissage

110-0 km 3ème Parachute (2h13min)
156 km 1er Parachute (2 sec)
155-110 km 2ème Parachute (15 min)
Données transmises via Cassini 2h28min de
descente et 1h12min à la surface Signal via des
radio-téléscopes 5h42min, y compris 3h14min sur
la surface
51
Radio detection of Huygens
52
Mesures des vents
Essentiellement vers lEst (prograde) Première
confirmation in situ de la superrotation de Titan
- turbulence considérable au-dessus des 120 km -
Vents très faibles entre 60 et 100 km
inexpliqué - Près de la surface des vents très
faibles (1 mètre par second)
53
Composition chimique
54
La structure thermique
  • Dans la haute atmosphere densité temperature
    plus grandes que celles attendues.. Le profil
    thermique présente des ondulations gt
    latmosphere est stratifiée et varie dans le
    temps.Stratopause -86 C à 250 km
  • Basse stratosphère tropopause très bon accord
    avec les mesures de Voyager 1.Tropopause -203
    C at 44 km
  • A la surface Température -180C
  • Pression 1.5 atm

55
Mosaïque panoramique en haute altitude (48 à 20
km) Construite à partir dimages DISR MRI et HRI
projetées depuis 34 km. Le Nord est en haut.
56
Vue panoramique depuis des altitudes moyennes (17
à 8 km).
57
A basse altitude (7 à 0.5 km) La crête
inférieure est entrecoupée dune douzaine de
canaux plus sombres.
58
Les hautes terres brillantes deux types de
systèmes fluviaux
Mosaïque panoramique projetée depuis 6.5 km
daltitude montrant les hauts terrains et
linterface brillant-sombre
59
Linstrument DISR la caméra-spectromètre de
Huygens
60
(No Transcript)
61
Température - 180 C Pression 1467 mbar
62
Après latterrissage de Huygens sur la surface de
Titan combinaison des images
63
Des  cailloux  sur Titan
64
Spectre DLIS à 20 m
  • - Méthane environ 5 à la surface
  • - Surface
  • matériau sombre sable imprégnée de CH4
  • absorption probable par la glace deau les
    cailloux

CH4
CH4
CH4
CH4
65
Surface Observations with the GCMS (Niemann et
al., Nature, 438, 779-784, 2005)
  • Detection of various organic compounds on the
    surface
  • Ethane, acetylene, cyanogen, benzene and in
    addition carbon dioxide.

Methane evaporated from the surface after warming
from the heated sample inlet as observed by an
increase of the methane signal after impact. A
moist area with liquid methane in the near
sub-surface is indicated.
66
Cassini radar
Lat. 80N, 35W. 140 km across. Resolution 500m.
67
Why is methane important?
  • Role of methane in Titans atmosphere
  • provides warming, due to
  • hydrocarbon haze in stratosphere (100 K), and
  • H2-N2 and CH4-N2 opacity in troposphere (20 K)
  • (warming) critical to sustain the very
    atmosphere
  • of nitrogen,
  • no CH4 ? little N2 (condensation)
  • Fate of methane
  • destroyed irreversibly by photochemistry in
  • 10-30 million years
  • How to replenish methane?
  • meteorology ? no
  • biology ? no

Cryovolcanism/outgassing
Grasset et al.
Outgassing from the interior - trapped in CH4
clathrates - hydrogeochemically
(serpentinization) ? ?!
68
Methane Origin
  • 1. methanogens - no 13C deficiency not seen
  • Earth
  • biogenic 12C/13C 92- 96 (organic)
  • inorganic 12C/13C 89.4 (V-PDB inorganic std.)
    (similar to Saturn, Jupiter, Sun)
  • Titan 12C/13C 82.3?1
  • 2. arrived as clathrate - possible
  • but no Xe, Kr, and very low 36Ar detected
  • 3. produced on Titan ? hydrothermal source -
    possible
  • but temperature/pressure problem

69
serpentinization cartoon
serpentinization
hydration of ultramafic silicates
(olivine/pyroxene) produces serpentine
(Mg,Fe)3Si2O5(OH)4, and methane
Si
H2O
Fe
Mg
serpentine
CH4
H2
C, CO, CO2
70
Hydrothermal vents Black Smoker
Juan De Fuca Ridge depth 2222 m exit temp
342 C chimney ht. 10 m
Mid-Atlantic Ridge
71
(No Transcript)
72
Image prise par la caméra HRI à 3 km daltitude
indiquant, dans la plaine sombre sur laquelle
Huygens va atterrir, un écoulement de fluide
autour dîles plus claires.
73
Titan comme si vous y étiez
74
Titan des images de la surface avec VIMS et
différentes observations
75
La mission Cassini continue
jusquen 2010
76
Comment notre vision de Titan a changé lors des
25 dernières années
77
Janvier 2025 (?)une mission Post-Cassini
78
Athéna Coustenis Laboratoire dEtudes Spatiales
et dInstrumentation en Astrophysique (LESIA)
Observatoire de Paris-Meudon, France Et le
TANDEM Consortium
(155 membres de 11 pays Européens, Et les US,
Canada, Japon, Chine, Taiwan)
79
Pourquoi Titan et Encelade après Cassini-Huygens?
Les révélations de Cassini-Huygens (2004-2010)
  • Even when the extended mission is taken into
    account, Cassini-Huygens will have provided us
    with
  • a few Enceladus flybys
  • about 60 hours of Titan flybys closer than
    10,000 km
  • 35 of high-resolution RADAR/SAR coverage (1-2
    km) of Titan and only a few of near-IR surface
    mapping at 2-km resolution
  • 14 Titan radio-occultations and a few hundred
    hours of far/mid IR observations
  • 70 Titan magnetic field observations 50
    ionospheric profiles

80
Why a new mission?
  • Cassini-Huygens did a great job in revealing the
    basic natures of Titan and Enceladus as
    geologically active planetary objects with
    atmospheres and of high astrobiological interest.
  • But it raised many fundamental questions and
    opened the path for a mandatory exploration that
    will give us the answers.
  • How? With TANDEM !
  • with a Titan-dedicated orbiter for complete
    mapping of the surface and exploration of as yet
    unknown parts of the atmosphere
  • with a full multi-site in situ exploration of
    Titan with balloon and probes
  • with extensive in situ exploration of
    Enceladus
  • with a host of new instruments adapted to this
    kind of exploration
  • at a later season so as to study Titan in the
    2026-2031 timeframe, at a season complementary to
    that observed by Cassini
  • A long-lived multi-element architecture enables
    powerful synergistic science via simultaneous
    measurements at different places or scales. We
    will thus be able to address questions that have
    not been in Cassini-Huygens' objectives surface,
    interior, astrobiology, organic content, etc

81
TANDEM A combined Post-Cassini-Huygens
exploration of Titan Enceladus. In situ study
of Titan as a system Enceladus as a
system Origins, evolution and interiors
Astrobiological potentials
ESA Cosmic Vision 2015-2025 Call Themes
addressed 1.3 Life and habitability in the
Solar System and 2.2 The giant planets and
their environments, but also 2.1 From the Sun
to the edge of the Solar System
http//www.lesia.obspm.fr/cosmicvision/tandem/
82
Science objectives
  • Titan as a system
  • Upper atmosphere/magnetosphere
  • Neutral atmosphere
  • Surface
  • Enceladus as a system
  • source of plumes and jets
  • Titan Enceladus
  • Surface/interior/origin and evolution
  • Astrobiology

83
Titan Upper Atmosphere/Induced Magnetosphere
  • Agnostosphere (400-950 km) not reached by most
    measurements
  • Important region for complex organic
    ion-molecule aerosol synthesis with relevance
    for the entire atmosphere and astrobiology
    Cassini-Huygens not equipped to study much of
    Agnostosphere/ Thermosphere/Ionosphere chemistry
  • Lower boundary of induced magnetosphere
    Internal magnetic field present on Titan?
  • Combination of in-situ/remote observations with
    dedicated orbiter!
  • Large gaps in SLT, LAT ALT coverage and
    temporal coverage of upper atmosphere/induced
    magnetosphere
  • Magnetotail/plasma wake region at intermediate
    distances (gt 4 RT) important for mass budget -
    Influence on dynamics of Saturnian magnetosphere
  • Temporal variations due to external solar and
    magnetospheric conditions
  • Improved and new instrumental payload
    configuration necessary to answer new questions
    raised during Cassini-Huygens mission
  • Advanced INMS to measure the very heavy neutrals
    and positive/ negative ions
  • DC electric field (plasma speed) for studying
    electrodynamic coupling
  • Millimetre Sub-mm spectrometer for neutral wind
  • A spinning orbiter (part-time at least) essential
    for E-field and particle pitch angle distribution
    measurements at necessary time resolution

84
Titans neutral atmosphere Motto Understand the
workings of Titans atmosphere!
  • ? Atmospheric structure
  • Determine the near-surface temperature and
    temperature profile in the polar troposphere
  • ?Atmospheric dynamics
  • Search for evidence of atmospheric tides and
    waves
  • Map out the meridional circulation and its change
    with seasons
  • Seek evidence of orographic and convective winds
    and clouds
  • ? Atmospheric composition and chemistry
  • Hydrocarbons, nitriles, polymerisation
  • ? Climate and alkanological cycle
  • Characterise the structure and evolution of the
    polar vortex
  • Map the seasonal and latitudinal variation in the
    tropospheric methane abundance
  • Determine the physical and chemical properties of
    clouds
  • Search for evidence of methane outgassing and
    evaporation from lakes
  • ? Quantify the coupling of the surface and
    atmosphere in terms of mass and energy balance

85
Titans surface
Understand Titans Geological System What are
the processes of liquid cycles and recharging
mechanisms and their relation to cryo-volcanism,
tectonics and erosion? -gt need to obtain infrared
stereo and radar mapping with resolutions lt100 m
-gt need highest-resolutions for specific sites
(lt 1 m) -gt need global compositional mapping
with resolutions lt 1 km -gt need sounding radar
to determine the depth and vertical structure of
surface and subsurface deposits and methanofers
Understand Titans liquids Are the lakes and
seas filled with methane and ethane, and do they
extend to a subcrustal hydrocarbon methanofer
system over a larger area of Titan? Where is
all the ethane? Are these processes affected by a
deep-water ocean, e.g. through fissures by tidal
flexing? -gt need to obtain infrared stereo and
radar mapping with resolutions lt100 m -gt need
highest-resolutions for specific sites (lt 1 m)
-gt need global compositional mapping with
resolutions lt 1 km -gt need sounding radar to
determine the depth and vertical structure of
surface and subsurface deposits and
methanofers -gt need measures of the gravity field
86
  • Understand Titans surface composition
  • What is the composition of surface and subsurface
    material?
  • What are the nature of chemical alteration
    processes
  • -gt need in-situ mineralogical/chemical
    analyses
  • -gt need compositional context and infrared
    imaging from a near-surface platform
  • (also required for selecting sampling sites
    for surface chemistry)
  • -gt need global compositional mapping with
    resolutions lt 1 km

Titans surface contd
  • Understand Titans atmosphere/surface interaction
  • What are the seasonal- and longer-scale
    dependencies of the distribution of materials
    across the surface?
  • What is the long term history of dunes?
  • -gt need multiple coverage of infrared stereo and
    radar mapping and highest-resolutions mapping of
    specific sites (lt 1 m)

87
Enceladus as a system
  • Origin, nature and properties of the jets and
    plume
  • (including dynamic properties, temporal
    variability, spatial distribution of gas/dust)
  • Existence, depth and extent of sub-surface liquid
    water (implications for heat sources, e.g. tidal
    heating, and composition, including possibly
    clathrates)
  • Signs of past/present life (including organic
    inventory)
  • Other Objectives include
  • Characterize the surface and its heterogeneity
    (including resurfacing and tectonic processes,
    vent structure, impact craters)
  • Characterize the interior (including structure
    and mass distribution, gravity field, global
    topography, endogenic and exogenic dynamics)
  • The impact of Enceladus on the magnetosphere
    (including magnetospheric processes, plasma
    loading effects)
  • Influence of Enceladus on other satellites
    (including surface contamination)
  • Influence of Enceladus on ring structure
  • Determination of dust flux into system

88
Titan and Enceladus interior early evolution
Science Goals
  • Present interior structure
  • Structure, heterogeneities in radial mass
    distribution.
  • Tidal Heating.
  • Geochemical constraints on bulk composition and
    internal differentiation.
  • Presence and extent of liquid water.
  • Tidally induced deformation, magnetic field and
    seismicity
  • Depth to liquid water reservoirs, radial extent
    and electrical conductivity.
  • Lateral variations in thickness and rigidity of
    the overlying icy crust.
  • Heat sources, cryovolcanism and eruptive
    processes
  • Intrinsic heatflow, near-surface thermal
    gradient.
  • Delivery of nitrogen and methane to the surface.
  • Geochemical and geophysical constraints on bulk
    composition and internal differentiation
  • Interior-surface interactions
  • Size and state of the rocky core, structure of
    the crust and depth of the methanifer, sources
    of atmospheric methane
  • What is the crustal history?
  • Early Evolution
  • Noble gas isotopic ratios (Ar, Kr, Xe, Ne) of
    surface materials and aerosol depositions,
    14N/15N isotopic ratios, presence of H2, N2 or CO
    at mass 28, presence of NH3, gas/dust ratio of
    plumes.
  • We need
  • to derermine topography, gravity and
    magnetosphere

Titans internal structure
Possible internal structure for Enceladus
89
Astrobiology Titan
Similarities of Titan with the Earth
  • Atmosphere, structure, composition, greenhouse
    properties, climate similarities (haze ? ozone)
  • Many geological similarities (liquid bodies,
    fluvial networks, dunes, (cryo)-volcanism,
    mountains, tectonics, erosion, impact craters )
  • Ice on Titan ? rock on Earth
  • Methane cycle ? water cycle
  • BUT Still to be fully understood!!

In addition an organic chemistry with many
similarities with the early Earths prebiotic
chemistry
90
Scénario de mission
  • Vaisseau 1 Orbiteur pour Encelade/Titan, et des
    pénétrateurs sur Encelade
  • Lancement autour de 2018, arrivée à Saturne,
    puis survols de Titan et Encelade
  • Largage des pénétrateurs sur Encelade
  • Le vaisseau se positionne autour de Titan
    uniquement
  • Vaisseau 2 Titan
  • Ballon, sondes
  • Arrivée à Titan après lorbiteur.
  • Déploiement du Ballon et des sondes

91
Possible architecture de mission
Une option possible consiste en ? Un orbiteur
(TitanEncelade) ? Un Ballon/Montgolfière dans
Titan et des mini-sondes ? Pénétrateurs/
atterrisseurs pour Encelade
Lorbiteur servira aussi de relais
92
Une Montgolfière sur Titan
Extract from Scientific American , Oct. 2007
93
Strawman Payload possibilities
  • The strawman instrument payload proposed for
    TANDEM provides a strong set of cross-cutting
    complementary observational capabilities, as
    determined by our traceability matrix
  • On the orbiter Multispectral spectrometers,
    Cameras, gradiometer, magnetometers, sub-surface
    radar, radio science, etc
  • On the balloon GCMS, cameras, GPR, HASI, etc
  • On the mini-probes with surface packages GCMS,
    radio, seismometers, organic matter and surface
    composition analyzers, GPR, microscope
  • and generally a host of new conceptual
    instruments will scan all spectral ranges and
    return data of high level of detail and quality.
  • The combination of orbiter and in-situ elements
    provides opportunities for both large and small
    payloads, engaging a potentially wider community
    of instrument providers from a variety of member
    states.
  • The heritage of previously successful missions
    such as Cassini-Huygens and new ones currently
    under study (such as ExoMars, etc) will be
    extremely beneficial to the definition of the
    technological feasibility and maturity of the
    proposed concept.

94
Key technology study areas
  • Improve upon Huygens EDL technology
  • Extend to controlled dips for aerocapture
  • Technology development for balloons, mini-probes
    penetrators
  • DtE communications
  • RTG heat exchanger, material development (2-layer
    concept) and drop deployment test for
    Montgolfière balloon. Small RTGs enable many new
    options (small balloons, long-lived seismic
    stations etc)
  • Microelectronics development which can be done
    under low radiation specification for mission.
  • Develop tether system and surface sampling
    capabilities.
  • Trade studies on solar electric propulsion
  • Trajectory designs for probe/landers/ penetrators
    releases on Titan and Enceladus
  • On-board science autonomy data selection,
    compression and storage
  • CDH and Telecom systems

95
Le futur Post-Cassini
Write a Comment
User Comments (0)
About PowerShow.com