Using 3D Seismic Imaging for Mine and Mineral Exploration

1 / 50
About This Presentation
Title:

Using 3D Seismic Imaging for Mine and Mineral Exploration

Description:

Using 3D Seismic Imaging for Mine and Mineral Exploration –

Number of Views:325
Avg rating:3.0/5.0
Slides: 51
Provided by: GeoPh
Category:

less

Transcript and Presenter's Notes

Title: Using 3D Seismic Imaging for Mine and Mineral Exploration


1
Using 3D Seismic Imaging for Mine and Mineral
Exploration
G. Schuster
University of Utah
2
Outline
  • Reflection Imaging Principles
  • Case History 3D Seismic Potash
  • Case History 2D Tomography
  • Case History Crosswell
  • Summary

3
Seismic Section
Depth
Time
4
Seismic Section
DepthvelT
Depth
Time
5
2-D Seismic Survey
30 m
6 km
6
3-D Seismic Survey
30 m
6 km
7
2D vs 3D
Top View
8
Outline
  • Reflection Imaging Principles
  • Case History 3D Seismic Potash
  • Case History 2D Tomography
  • Case History Crosswell
  • Summary

9
Potash Geology(Pruegger Nemeth)
  • Sakatchewn Province 12 km/12 km Potash mine 1
    km depth
  • Geology

Potash
Salt
Karst
Limestone
10
Potash Geology
  • Sakatchewn Province 12 km/12 km Potash mine 1
    km depth
  • Geology

Potash
Salt
Karst
Limestone
11
3D Seismic Parameters
  • Receiver line interval 180 m
  • Source line interval 300 m
  • 550 traces/shot
  • 60 m shot/recievr interval
  • 150 Hz Dynamite, 12-fold, 30 m
  • 1/3 million dollars

12
Top View of Mine (z1 km)
Disturbance
Seismic Anomaly?
10 km
13
Collapsed Breccia
15 m
14
Collapsed Breccia
10 m
15
3D Seismic Sections
Summary
Boreholes
Top Salt
16
3D Seismic Depth Slices and Cross Sections
1 km
17
Integrated Lanigan Data
Mine
200 m
18
Red Bed
200 m
Limestone
19
Looking Down View
20
200 m
Limestone
21
Limestone
22
Interpretation
Seismic
0.0 km
1.0 km
23
Prugger and Nemeth Summary
  • We found a number of inconsistencies with our
    data (eg.- seismic depth conversion, borehole
    orientation, coordinate conversion) once
    everything was put together in GOCAD.

24
WHATS NEXT FOR POTASHCORP ?
  • We are building a MODEL3D earth model from 3D
    seismic well-logs, which results in a velocity
    VOXET. This is then used to depth-migrate the
    seismic data, resulting in an improved seismic
    depth-image.
  • We plan to keep adding data, minesite by
    minesite, and we want make GOCAD conveniently
    available at all our mine divisions.

25
Outline
  • Reflection Imaging Principles
  • Case History 3D Seismic Potash
  • Case History 2D Tomography
  • Case History Crosswell
  • Summary

26
Mineral Geology
  • Western State Large mining operation over many
    km, but at shallow depth (30 m)
  • Geology

27
Goal Cheaply Find Lateral Extent of Play
Soln 2-D Refraction Tomography
  • Geology

28
Seismic Imaging of Anomaly
Velocity Anomaly
29
Seismic Imaging of Anomaly
Velocity Anomaly
30
Seismic Imaging of Anomaly
Fast Time
Velocity Anomaly
31
Seismic Imaging of Anomaly
Slow Time
Fast Time
Velocity Anomaly
32
Seismic Imaging of Anomaly
3.0 m
33
Discretize Earth Model into Grid of Unknown
Velocities
34
One Traveltime Equation for Each Measurement
35
One Traveltime Equation for Each Measurement
T L /v L /v L /v
36
Many Traveltime Equations for Each Shot
T L /v L /v L /v
T L /v L /v L /v
37
Field Data
  • Thirty-one shots and 120 traces
  • total 3188 traveltimes picked.
  • Shot interval 20 m
  • geophone interval 5 m
  • Source frequency 40 Hz.
  • Record length 1 sec.
  • sample interval 0.5 millisecond .

38
Seismic Refraction Data
Common Shot Gather Line 2
West
East
Created with Vista
39
Seismic Data Acquisition Parameters
40
Seismic Refraction Data
Line 1 Final Model (3rd Schedule)
Ray Path Density
Velocity Profile
Ray Density Plot
41
Summary
42
Conclusions
gt 50K several sq. km
Depth Resolution 5-20 m
Offset Resolution 20-60 m
Requires Expert Processing
gt 5K several km
Always works, moderate expertise, 41
offset/depth ratio
43
Crosswell Traveltime Tomography
44
Fault Model
S
P
0
1150
2300
Depth (m)
3650 m/s
1825 m/s
210
0
0
90
90
Offset (m)
Offset (m)
45
Fault Tomogram
S
P
0
A
A
1150
2300
C
C
D
Depth (m)
B
B
3650 m/s
1825 m/s
210
0
0
90
90
Offset (m)
Offset (m)
46
W Texas Tomogram
P
S
0
A
7750
14000
B
Depth (ft)
D
12700 ft/s
22500 ft/s
C
500
0
0
184
184
Offset (ft)
Offset (ft)
47
Crosswell McElroy Data
6505
820
201 shots from depths of 811 to 963 m
840
846m
6136
186 hydrophones from depths of 822 to 963 m
860
880
887m
5767
Shot, hydrophone interval 0.76m
Depth (m)
900
920m
920
Maximum source freq. 1400 Hz
5398
940
960
5029
0
50
40
30
20
10
(m/s)
Distance (m)
48
Crosswell McElroy Comparison
V
Receiver Well
V
Source Well
2700
Depth (ft)
3150
49
Poisson Ratio Comparison
Visco.
0
A
0.35
Depth (ft)
B
0.05
250
0
184
Offset (ft)
50
Summary
Write a Comment
User Comments (0)
About PowerShow.com