Title: Using 3D Seismic Imaging for Mine and Mineral Exploration
1Using 3D Seismic Imaging for Mine and Mineral
Exploration
G. Schuster
University of Utah
2Outline
- Reflection Imaging Principles
- Case History 3D Seismic Potash
- Case History 2D Tomography
3Seismic Section
Depth
Time
4Seismic Section
DepthvelT
Depth
Time
52-D Seismic Survey
30 m
6 km
63-D Seismic Survey
30 m
6 km
72D vs 3D
Top View
8Outline
- Reflection Imaging Principles
- Case History 3D Seismic Potash
- Case History 2D Tomography
9Potash Geology(Pruegger Nemeth)
- Sakatchewn Province 12 km/12 km Potash mine 1
km depth
Potash
Salt
Karst
Limestone
10Potash Geology
- Sakatchewn Province 12 km/12 km Potash mine 1
km depth
Potash
Salt
Karst
Limestone
113D Seismic Parameters
- Receiver line interval 180 m
- Source line interval 300 m
- 60 m shot/recievr interval
- 150 Hz Dynamite, 12-fold, 30 m
12Top View of Mine (z1 km)
Disturbance
Seismic Anomaly?
10 km
13Collapsed Breccia
15 m
14Collapsed Breccia
10 m
153D Seismic Sections
Summary
Boreholes
Top Salt
163D Seismic Depth Slices and Cross Sections
1 km
17Integrated Lanigan Data
Mine
200 m
18Red Bed
200 m
Limestone
19Looking Down View
20200 m
Limestone
21Limestone
22Interpretation
Seismic
0.0 km
1.0 km
23Prugger and Nemeth Summary
- We found a number of inconsistencies with our
data (eg.- seismic depth conversion, borehole
orientation, coordinate conversion) once
everything was put together in GOCAD.
24WHATS NEXT FOR POTASHCORP ?
- We are building a MODEL3D earth model from 3D
seismic well-logs, which results in a velocity
VOXET. This is then used to depth-migrate the
seismic data, resulting in an improved seismic
depth-image.
- We plan to keep adding data, minesite by
minesite, and we want make GOCAD conveniently
available at all our mine divisions.
25Outline
- Reflection Imaging Principles
- Case History 3D Seismic Potash
- Case History 2D Tomography
26Mineral Geology
- Western State Large mining operation over many
km, but at shallow depth (30 m)
27Goal Cheaply Find Lateral Extent of Play
Soln 2-D Refraction Tomography
28Seismic Imaging of Anomaly
Velocity Anomaly
29Seismic Imaging of Anomaly
Velocity Anomaly
30Seismic Imaging of Anomaly
Fast Time
Velocity Anomaly
31Seismic Imaging of Anomaly
Slow Time
Fast Time
Velocity Anomaly
32Seismic Imaging of Anomaly
3.0 m
33Discretize Earth Model into Grid of Unknown
Velocities
34One Traveltime Equation for Each Measurement
35One Traveltime Equation for Each Measurement
T L /v L /v L /v
36Many Traveltime Equations for Each Shot
T L /v L /v L /v
T L /v L /v L /v
37Field Data
- Thirty-one shots and 120 traces
- total 3188 traveltimes picked.
- Shot interval 20 m
- geophone interval 5 m
- Record length 1 sec.
- sample interval 0.5 millisecond .
38Seismic Refraction Data
Common Shot Gather Line 2
West
East
Created with Vista
39Seismic Data Acquisition Parameters
40Seismic Refraction Data
Line 1 Final Model (3rd Schedule)
Ray Path Density
Velocity Profile
Ray Density Plot
41Summary
42Conclusions
gt 50K several sq. km
Depth Resolution 5-20 m
Offset Resolution 20-60 m
Requires Expert Processing
gt 5K several km
Always works, moderate expertise, 41
offset/depth ratio
43Crosswell Traveltime Tomography
44Fault Model
S
P
0
1150
2300
Depth (m)
3650 m/s
1825 m/s
210
0
0
90
90
Offset (m)
Offset (m)
45Fault Tomogram
S
P
0
A
A
1150
2300
C
C
D
Depth (m)
B
B
3650 m/s
1825 m/s
210
0
0
90
90
Offset (m)
Offset (m)
46W Texas Tomogram
P
S
0
A
7750
14000
B
Depth (ft)
D
12700 ft/s
22500 ft/s
C
500
0
0
184
184
Offset (ft)
Offset (ft)
47Crosswell McElroy Data
6505
820
201 shots from depths of 811 to 963 m
840
846m
6136
186 hydrophones from depths of 822 to 963 m
860
880
887m
5767
Shot, hydrophone interval 0.76m
Depth (m)
900
920m
920
Maximum source freq. 1400 Hz
5398
940
960
5029
0
50
40
30
20
10
(m/s)
Distance (m)
48Crosswell McElroy Comparison
V
Receiver Well
V
Source Well
2700
Depth (ft)
3150
49Poisson Ratio Comparison
Visco.
0
A
0.35
Depth (ft)
B
0.05
250
0
184
Offset (ft)
50Summary