A difference of two squares - PowerPoint PPT Presentation

1 / 107
About This Presentation
Title:

A difference of two squares

Description:

... the answer to questions such as 4012 4002 without a ... Multiplying 23 by 25 using the grid method. 23 x 25. x. 23 x 25. 20. x. 23 x 25. 3. 20. x. 23 x 25 ... – PowerPoint PPT presentation

Number of Views:164
Avg rating:3.0/5.0
Slides: 108
Provided by: suzanne192
Category:

less

Transcript and Presenter's Notes

Title: A difference of two squares


1
A difference of two squares
  • Mr Fakhfakh

2
Learning objective
  • Understand how to calculate a difference of two
    squares by using knowledge of square numbers

3
Assessment objective
  • By the end of this lesson you will be able to
  • calculate the answer to questions such as 4012
    4002 without a calculator
  • prove a difference of two squares geometrically
    and algebraically

4
Square numbers???
5
Square numbers???
  • 1 36 121
  • 4 49 144
  • 9 64 169
  • 16 81 196
  • 25 100 225

6
Work out
  • 22 - 12
  • 32 - 22
  • 42 - 32
  • 52 - 42

7
Work out
  • 22 - 12 3
  • 32 - 22 5
  • 42 - 32 7
  • 52 - 42 9

8
Work out
  • 32 - 12
  • 42 - 22
  • 52 - 32
  • 62 - 42

9
Work out
  • 32 - 12 8
  • 42 - 22 12
  • 52 - 32 16
  • 62 - 42 20

10
Work out
  • 42 - 12
  • 52 - 22
  • 62 - 32
  • 72 - 42

11
Work out
  • 42 - 12 15
  • 52 - 22 21
  • 62 - 32 27
  • 72 - 42 33

12
What do you notice?
42 - 12 15 52 - 22 21 62 - 32 27 72 - 42
33
  • 22 - 12 3
  • 32 - 22 5
  • 42 - 32 7
  • 52 - 42 9

32 - 12 8 42 - 22 12 52 - 32 16 62 - 42 20
13
So
  • Difference of two squares sum of two numbers x
    difference of two numbers

Let a first number Let b second number a2
b2 (a b) x (a b)
14
Proof of a difference of two squares
  • Geometric proof

15
a
b
a
b
Area of each of the squares is?
16
a
Area a2
Area b2
b
a
b
17
a
Area a2
b
Area b2
a
b
18
Area ?
a
b
a
b
19
Area a2 b2
a
b
a
b
20
Area a2 b2
a
b
?
b
21
Area a2 b2
a
b
a-b
b
22
Area a2 b2
a
b
a-b
b
23
Area a2 b2
a
b
a-b
b
24
?
a
b
a-b
b
25
a-b
a
b
a-b
26
a-b
a
b
a-b
27
a-b
a
b
a-b
28
a-b
a
b
a-b
29
a-b
a
b
a-b
30
a-b
a
b
a-b
31
a-b
a
b
a-b
32
a-b
a
b
a-b
33
a-b
a
b
a-b
34
a-b
a
b
a-b
35
a-b
a
b
a-b
36
a-b
a
b
a-b
37
a-b
a
b
a-b
38
a-b
a
b
a-b
39
a-b
a
b
a-b
40
a-b
a
b
a-b
41
a-b
a
b
a-b
42
a-b
a
b
a-b
43
a-b
a
b
a-b
44
a-b
a
b
a-b
45
a-b
a
b
a-b
46
a-b
a
47
a-b
a
48
a-b
a
49
a-b
a
50
a-b
a
51
a-b
a
52
a-b
a
53
a-b
a
54
a-b
a
55
a-b
a
56
a-b
a
57
a-b
a
58
a-b
a
59
a-b
a
60
a-b
a
61
a-b
a
62
a
a-b
?
63
a
a-b
ab
64
Area ?
a-b
ab
65
Area (a b)(a - b)
a-b
ab
66
Area (a b)(a - b)
a-b
ab
Therefore a2 b2 (a b)(a - b)
67
Proof of a difference of two squares
  • Algebraic proof

68
Algebraic proof
  • a2 b2 (a b) x (a b)

69
Algebraic proof
  • Recap
  • Multiplying 23 by 25 using the grid method

70
23 x 25
71
23 x 25
72
23 x 25
73
23 x 25
74
23 x 25
75
23 x 25
76
23 x 25
77
23 x 25
78
23 x 25
79
23 x 25
  • 400
  • 100
  • 60
  • 15

80
23 x 25 575
  • 400
  • 100
  • 60
  • 15
  • 575

81
(x 1) (x 3)
82
(x 1) (x 3)
83
(x 1) (x 3)
84
(x 1) (x 3)
85
(x 1) (x 3)
86
(x 1) (x 3)
87
(x 1) (x 3)
88
(x 1) (x 3)
89
(x 1) (x 3)
90
(x 1) (x 3)
91
(x 1) (x 3)
(x 1) (x 3) x2 x 3x 3 So (x 1) (x
3) x2 4x 3
92
(a b) (a - b)
93
(a b) (a - b)
94
(a b) (a - b)
95
(a b) (a - b)
96
(a b) (a - b)
97
(a b) (a - b)
98
(a b) (a - b)
99
(a b) (a - b)
100
(a b) (a - b)
101
(a b) (a - b)
102
(a b) (a - b)
(a b) (a - b) a2 ab ab b2
(a b) (a - b) a2 ab ab b2
(a b) (a - b) a2 b2
103
We have our proof!
(a b) (a - b) a2 b2
104
What is
  • 5012 5002
  • 5022 5002
  • 5032 5002
  • 1052 1022

105
Learning objective
  • Understand how to calculate a difference of two
    squares by using knowledge of square numbers

106
Assessment objective
  • By the end of this lesson you will be able to
  • calculate the answer to questions such as 4012
    4002 without a calculator
  • prove a difference of two squares geometrically
    and algebraically

107
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com