Title: June 2006 CARE
1 June 2006 CARE
- Robert Eramo - Risk Assessment Strategies,Inc.
and Representative of Insureware
2Method Background
- Measure Process Parameter Risk
- Use Insurewares ICRFS
- Apply to Individual Triangles First
- Compare Triangles to Find Parameter Correlations
3Process Parameter Risk
- Coin Flip Example
- Variability of of Heads due to the basic
process and Knowing Fairness of Coin - Triangles likewise have similar contributors to
Variability of Outcome
4Loss Outcome Variability
- Size of Book Main Source Of Process Risk
- Relative Variance Higher For Book of Claims With
100 Expected Claims vs. 1000 Expected Claims - Trends in Development and Calendar Inflation are
Key parameters - Knowledge Of Parameters Uncertain
5Triangle Parameter Risk
- Usually Not dependent of co.s size of book
- Therefore Increased Size Does Not Diversify
- Way to Improve Knowledge of Parameters
- ICRFS Example
6Large Company
- Two Major Subsidiaries BOT POT
- Can Analyzing Both Simultaneously Improve
Knowledge of Parameters - First Note Initial Separate Models
- Look at Parameters For BOT Explicitly
7Separate Models BOT POT
- Note t-statistics of development and calendar yr.
parameters - Specifics
- Specifics
- Specifics
8Combined Model Benefits
- Note New Model Displays
- T-statistics specifics
- Comparison of Independent Models
9Pot Development Parameter t-StatisticsModele
d Alone
Dev Period 12-24 Dev Period 24-72 Dev Period 72-120
Trend -.5753 -.4864 -.2867
T-Statistic -16.87 -21.00 -5.075
10Pot Development Parameter t-StatisticsModele
d in Composite
Dev Period 12-24 Dev Period 24-72 Dev Period 72-120
Trend -.6255 -.5102 -.3809
T-Statistic -18.90 -49.54 -14.16
11Pot Calendar Parameter
t-StatisticsModeled Alone
Cal Period 90-93 Cal Period 97-99
Trend .1827 .1827
T-Statistic 10.09 10.09
12Pot Calendar Parameter
t-StatisticsModeled in Composite
Cal Period 90-93 Cal Period 97-99
Trend .1792 .1792
T-Statistic 10.18 10.18
13Application to Company vs. Statewide Experience
- Model Company State Separately
- If there are reasonable correlations parameter
uncertainty for company A model can be reduced
14Application to Excess Layers
- Model Layers Separately
- Improve Knowledge of Parameters in XS Pricing