AccelerationVelocity Models - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

AccelerationVelocity Models

Description:

Same as example 1, but we assume the air resistance proportional to the square ... Compare with Euler's method? Project 2 on the web (DUE next Thurs, Oct.19) ... – PowerPoint PPT presentation

Number of Views:25
Avg rating:3.0/5.0
Slides: 16
Provided by: jinji5
Category:

less

Transcript and Presenter's Notes

Title: AccelerationVelocity Models


1
Acceleration-Velocity Models Runge-Kutta Method
  • 10-12-2006

2
Acceleration-Velocity Models
  • Newtons 2nd Law

The rate of change of the momentum of a body is
directly proportional to the net force acting on
it, and the direction of the change in momentum
takes place in the direction of the net force.
F m a
force
mass
acceleration
1726 by John Venderbank
3
Gravity
  • dv/dt v(t) a
  • m v F
  • The gravity acceleration g9.8m/s
  • The force of gravity Fg -m g
  • m v Fg -m g
  • v -g
  • General Solution v(t) -g t C , C is
    constant
  • Given v0 v(0), we get the particular solution
  • v(t) -g t v0

4
Example 1
  • A crossbow bolt is shot straight upward from the
    ground (h(0)h00) with initial velocity v049
    (m/s).
  • v -g -9.8
  • v(t) -9.8 t v0 -9.8 t 49.
  • The bolts height h(t) v(t).
  • h(t) ? v(t) dt ? (-9.8 t 49) dt
  • -4.9t249th0 -4.9t249t -4.9
    t(t-10)
  • Q1 0V(T)-9.8 T 49, so T5 (s)
  • ? After 5 seconds, the velocity is zero.
  • Q2 hmax h(T) h(5) -4.95(5-10)122.5 (m)
  • ? The maximum height is 122.5 meter.
  • Q3 0y(t)-4.9 t(t-10), so t 10 (s)
  • ? After 10 seconds, the bolt returns to the
    ground.

5
Matlab
  • t1 00.110
  • h1 -4.9t1.2 49t1
  • plot(t,h1)

6
Resistance 1
  • Resistance proportional to velocity Fr - k v
  • F Fg Fr - m g k v
  • mv-mg-kv
  • So, v - g p v, where p k/m is constant.
  • This equation is a separable first-order DE, the
    solution is
  • v(t) (v0 g/p) exp(-pt) g/p
  • When t -gt 8, v -g/p.
  • Therefore, there is a terminal speed V g/p.
  • The height h(t) v(t), so the general
    solution
  • h(t) -( v0 g / p) exp(-pt) / p - g t / p
    C
  • h0h(0) gives us C h0 ( v0 g / p )/ p
  • Thus, h(t) ( v0 g / p) (1 - exp(-pt) ) / p -
    g t / p h0

7
Example 2
  • Same problem as example 1, but we take the air
    resistance into account, with p0.04.
  • Q1 Maximum height ?
  • Q2 When it will return to the ground?
  • H00, v049, p0.04, so
  • v(t) 294 exp(-4/25) 245.
  • h(t) 7350 - 245 t - 7350 exp(-t/25).
  • 0v(t) 294 exp(-4/25) 245, so t25
    ln(294/245)4.558 (s)
  • Maximum height hmax(tm) 108.28 (m)
  • 0y(t) 7350 - 245 t - 7350 exp(-t/25)
  • MATLAB eval(solve('7350-245t-7350exp(-t/25)0'
    ,'t'))
  • Result t 9.411 (s)

8
Matlab
  • t2 00.110
  • h27350 - 245.t2 - 7350 exp(-t2./25)
  • plot(t2,yh)

9
Example 1 and 2 together
  • t 00.110
  • h1 -4.9t.2 49t
  • h27350 - 245.t - 7350 exp(-t./25)
  • plot(t,h1,r,t,h2,b)

10
Resistance 2
  • Resistance proportional to the square of the
    velocity
  • Fr k v2 - k v v
  • Then, m v Fg Fr - m g k v v
  • v(t) -g p v v, p k/m
  • Upward
  • v(t) - g p v2 , h(t) v(t)
  • Solutions for velocity and height?
  • Downward
  • v(t) -g p v2 , h(t) v(t)
  • Solutions for velocity and height?

11
Example 3
  • Same as example 1, but we assume the air
    resistance proportional to the square of the
    velocity, with p 0.0011.
  • Upward
  • dsolve('Dv-g-pv2','v(0)v0','t')
  • OR dsolve('Dv - 9.8 -0.0011v2','v(0)49','t'
    )
  • fuinline(??','t',h')
  • t3u,h3uode45(fu,0,?,0)
  • Downward
  • dsolve('Dv-gpv2','v(0)v0','t')
  • OR dsolve('Dv - 9.8 0.0011v2','v(0)49','t'
    )
  • fdinline(??','t',h')
  • t3u,h3uode45(fd,?,?,?)

12
Examples 1, 2 and 3 together
  • plot(t,h1,'r',t,h2,'m',t3u,h3u,'k',t3d,h3d,'b')

13
Runge-Kutta Method
  • dy/dx f(x,y), with IC y(x0) y0
  • K1 f(Xn,Yn)
  • K2 f(Xn0.5h, Yn0.5hk1)
  • K3 f(Xn0.5h, Yn0.5hk2)
  • K4 f(Xn1, Ynhk3)
  • Yn1 Yn (k12k22k3k4)h/6.

14
Exercises
  • dy/dx x y, y(0) 1
  • dy/dx x2 y2, y(0) 1
  • dy/dx 5y 6 exp(-x), y(0) 1
  • Compare with Eulers method?

15
  • Project 2 on the web (DUE next Thurs, Oct.19)
  • http//math.asu.edu/jliu/MAT275/
Write a Comment
User Comments (0)
About PowerShow.com