Title: MECH593 Finite Element Methods
1MECH303 Advanced Stresses Analysis
Lecture 5 FEM of 1-D Problems Applications
2Torsional Shaft
Review
Assumption Circular cross section
Shear stress
Shear strain
Deformation
3Finite Element Equation for Torsional Shaft
4Bending Beam
y
Review
M
M
x
Pure bending problems
Normal strain
Normal stress
Normal stress with bending moment
Moment-curvature relationship
Flexure formula
5Bending Beam
y
Review
q(x)
x
Relationship between shear force, bending moment
and transverse load
Deflection
Sign convention
-
M
M
M
-
V
V
V
6Governing Equation and Boundary Condition
0ltxltL
- Boundary Conditions -----
Essential BCs if v or is specified at the
boundary. Natural BCs if or
is specified at the boundary.
7Weak Formulation for Beam Element
- Weighted-Integral Formulation for one element
- Weak Form from Integration-by-Parts ----- (1st
time)
8Weak Formulation
- Weak Form from Integration-by-Parts ----- (2nd
time)
9Weak Formulation
q(x)
Q1
y(v)
Q3
Q2
Q4
x
x x2
x x1
L x2-x1
10Ritz Method for Approximation
q(x)
Q1
y(v)
Q3
Q2
Q4
x
x x2
x x1
L x2-x1
where
Let w(x) fi (x), i 1, 2, 3, 4
11Ritz Method for Approximation
12Ritz Method for Approximation
13Selection of Shape Function
The best situation is -----
Interpolation Properties
14Derivation of Shape Function for Beam Element
Local Coordinates
How to select fi???
and
where
Let
Find coefficients to satisfy the interpolation
properties.
15Derivation of Shape Function for Beam Element
How to select fi???
e.g.
Let
Similarly
16Derivation of Shape Function for Beam Element
In the global coordinates
17Element Equations of 4th Order 1-D Model
q(x)
u1
y(v)
u3
u2
u4
x
x x1
L x2-x1
x x2
f4
f1
1
1
f3
f2
xx2
xx1
18Element Equations of 4th Order 1-D Model
q(x)
u1
y(v)
u3
u2
u4
x
x x2
x x1
L x2-x1
19Finite Element Analysis of 1-D Problems -
Applications
Example 1.
Governing equation
Weak form for one element
where
20Finite Element Analysis of 1-D Problems
Example 1.
Approximation function
f4
f1
f3
xx1
f2
xx2
21Finite Element Analysis of 1-D Problems
Example 1.
Finite element model
Discretization
P2 , v2
P3 , v3
P4 , v4
P1 , v1
II
III
I
M1 , q1
M3 , q3
M4 , q4
M2 , q2
22Matrix Assembly of Multiple Beam Elements
Element I
23Matrix Assembly of Multiple Beam Elements
24Solution Procedures
Apply known boundary conditions
25Solution Procedures
26Shear Resultant Bending Moment Diagram
27Plane Flame
Frame combination of bar and beam
Q1 , v1
E, A, I, L
Q3 , v2
P1 , u1
P2 , u2
Q4 , q2
Q2 , q1
28Finite Element Model of an Arbitrarily Oriented
Frame
y
q
x
y
q
x
29Finite Element Model of an Arbitrarily Oriented
Frame
local
global
30Plane Frame Analysis - Example
Hinge Joint
Rigid Joint
F
F
F
F
Beam II
Bar
Beam
Beam I
31Plane Frame Analysis
Q3 , v2
Q4 , q2
P2 , u2
P1 , u1
Q2 , q1
Q1 , v1
32Plane Frame Analysis
Q3 , v3
Q1 , v2
P1 , u2
P2 , u3
Q4 , q3
Q2 , q2
33Plane Frame Analysis
34Plane Frame Analysis