Title: Multiplying Pairs of Brackets and Simplifying
1Multiplying Pairs of Brackets and Simplifying
2This means to multiply out a pair, or more, of
brackets. e.g. (ax b) (cx d).There are
3 ways of expanding brackets. They are
- The Box method
- The FOIL method
- The Separation method
- CLICK ON THE
HYPERLINK TO GO STRAIGHT TO THE RELEVANT PAGE
3 The Box Method
Multiply the individuals components together
(2a 3)(4a 2)
4 The Box Method
(2a 3)(4a 2)
5We now have four separate values so (2a3)
(4a2) 8a2 12a 4a 6 This can be simplified
to give us our final answer (2a3) (4a2) 8a2
16a6
6Exercise
- (x 2)(x 1)
- (x 8)(x 2)
- (x 3)(x 3)
- (x 4)(x 5)
- (x 9)(x 2)
- (x 8)(x 3)
- (x 1)(x 6)
- (x 2)(x 8)
- (x 2)(5 x)
- (8 x)(1 x)
- x2 3x 2
- x2 10x 16
- x2 6x 9
- x2 x - 20
- x2 7x - 18
- x2 5x - 24
- x2 7x 6
- x2 6x 16
- -x2 3x 10
- x2 9x 8
- HOME
7 The FOIL method
FOIL stands for FIRST, OUTER, INNER, LAST And
refers to the order in which the values are
multiplied. For Example (x 3) (x -
5) FIRST, x x x x2 OUTER, x x -5
-5x INNER, 3 x x 3x LAST 3 x -5
-15 SIMPLIFY (x 3) (x - 5) x2 -2x -15
8 Example 2 (2x - 3) (4x - 5) FIRST, 2x x 4x
8x2 OUTER, 2x x -5 -10x INNER, -3 x 4x
-12x LAST -3 x -5 15 SIMPLIFY (2x - 3)
(4x - 5) 8x2 -22x 15
9Exercise
- (x 5) (x 5)
- (2x 3) (5x 4)
- (x 3) (x 3)
- (3 x) (3 x)
- (2x 9) (2x 9)
- (x 9) (x 2)
- (5x 1) (6x 2)
- (3x 7) (2x 3)
- (2 x) (x 5)
- (8 2x) (1 x)
- x2 10x 25
- 10x2 7x 12
- x2 6x 9
- x2 6x 9
- 4x2 81
- x2 7x 18
- 30x2 4x 2
- 6x2 23x 21
- x2 3x 10
- 2x2 10x 8
- HOME
10 The Separation Method
Separating the brackets will often make life much
easier. For example (x 5) (2x 3) x(2x 3)
5(2x-3) Now we can multiply out the separate
brackets to obtain x(2x 3) 2x2 -3x and
5(2x-3) 10x -15 Adding these will give 2x2
-3x 10x -15 2x2 7x -15
11Example 2 (x2 2x - 5) (2x 3) x2(2x 3)
2x(2x-3) 5(2x-3) Now we can multiply out the
separate brackets to obtain x2(2x 3) 2x3 -
3x2 2x(2x 3) 4x2 6x and -5(2x-3) -10x
15 Adding these will give 2x3 -3x2 4x2 -6x -
10x 15 2x3 x2 - 16x 15
12Exercise
- (x 4) (x 4)
- (x 3) (5x 4)
- (x 3) (x 3)
- (3 x) (3 x)
- (2x 9) (2x 9)
- (2x 9) (4x 2)
- (6x 2) (x 1)
- (2x 7) (3x 3)
- (2 3x) (x2 4x)
- (8 x x2) (1 5x)
- x2 8x 16
- 5x2 11x 12
- x2 9
- 9 x2
- 4x2 36x 81
- 8x2 32x 18
- 6x2 4x 2
- 6x2 27x 21
- 3x3 10x2 8x
- 5x3 6x2 41x 8
- HOME