Multiplying Pairs of Brackets and Simplifying - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Multiplying Pairs of Brackets and Simplifying

Description:

Separating the brackets will often make life much easier. For example (x 5) (2x 3) = x(2x 3) 5(2x-3) ... Adding these will give. 2x3 -3x2 4x2 -6x - 10x ... – PowerPoint PPT presentation

Number of Views:116
Avg rating:3.0/5.0
Slides: 13
Provided by: rja65
Category:

less

Transcript and Presenter's Notes

Title: Multiplying Pairs of Brackets and Simplifying


1
Multiplying Pairs of Brackets and Simplifying
2
This means to multiply out a pair, or more, of
brackets. e.g. (ax b) (cx d).There are
3 ways of expanding brackets. They are
  • The Box method
  • The FOIL method
  • The Separation method
  • CLICK ON THE
    HYPERLINK TO GO STRAIGHT TO THE RELEVANT PAGE

3
The Box Method
Multiply the individuals components together
(2a 3)(4a 2)
4
The Box Method
(2a 3)(4a 2)
5
We now have four separate values so (2a3)
(4a2) 8a2 12a 4a 6 This can be simplified
to give us our final answer (2a3) (4a2) 8a2
16a6
6
Exercise
  • (x 2)(x 1)
  • (x 8)(x 2)
  • (x 3)(x 3)
  • (x 4)(x 5)
  • (x 9)(x 2)
  • (x 8)(x 3)
  • (x 1)(x 6)
  • (x 2)(x 8)
  • (x 2)(5 x)
  • (8 x)(1 x)
  • x2 3x 2
  • x2 10x 16
  • x2 6x 9
  • x2 x - 20
  • x2 7x - 18
  • x2 5x - 24
  • x2 7x 6
  • x2 6x 16
  • -x2 3x 10
  • x2 9x 8
  • HOME

7
The FOIL method
FOIL stands for FIRST, OUTER, INNER, LAST And
refers to the order in which the values are
multiplied. For Example (x 3) (x -
5) FIRST, x x x x2 OUTER, x x -5
-5x INNER, 3 x x 3x LAST 3 x -5
-15 SIMPLIFY (x 3) (x - 5) x2 -2x -15
8
Example 2 (2x - 3) (4x - 5) FIRST, 2x x 4x
8x2 OUTER, 2x x -5 -10x INNER, -3 x 4x
-12x LAST -3 x -5 15 SIMPLIFY (2x - 3)
(4x - 5) 8x2 -22x 15
9
Exercise
  • (x 5) (x 5)
  • (2x 3) (5x 4)
  • (x 3) (x 3)
  • (3 x) (3 x)
  • (2x 9) (2x 9)
  • (x 9) (x 2)
  • (5x 1) (6x 2)
  • (3x 7) (2x 3)
  • (2 x) (x 5)
  • (8 2x) (1 x)
  • x2 10x 25
  • 10x2 7x 12
  • x2 6x 9
  • x2 6x 9
  • 4x2 81
  • x2 7x 18
  • 30x2 4x 2
  • 6x2 23x 21
  • x2 3x 10
  • 2x2 10x 8
  • HOME

10
The Separation Method
Separating the brackets will often make life much
easier. For example (x 5) (2x 3) x(2x 3)
5(2x-3) Now we can multiply out the separate
brackets to obtain x(2x 3) 2x2 -3x and
5(2x-3) 10x -15 Adding these will give 2x2
-3x 10x -15 2x2 7x -15
11
Example 2 (x2 2x - 5) (2x 3) x2(2x 3)
2x(2x-3) 5(2x-3) Now we can multiply out the
separate brackets to obtain x2(2x 3) 2x3 -
3x2 2x(2x 3) 4x2 6x and -5(2x-3) -10x
15 Adding these will give 2x3 -3x2 4x2 -6x -
10x 15 2x3 x2 - 16x 15
12
Exercise
  • (x 4) (x 4)
  • (x 3) (5x 4)
  • (x 3) (x 3)
  • (3 x) (3 x)
  • (2x 9) (2x 9)
  • (2x 9) (4x 2)
  • (6x 2) (x 1)
  • (2x 7) (3x 3)
  • (2 3x) (x2 4x)
  • (8 x x2) (1 5x)
  • x2 8x 16
  • 5x2 11x 12
  • x2 9
  • 9 x2
  • 4x2 36x 81
  • 8x2 32x 18
  • 6x2 4x 2
  • 6x2 27x 21
  • 3x3 10x2 8x
  • 5x3 6x2 41x 8
  • HOME
Write a Comment
User Comments (0)
About PowerShow.com