Title: Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples
1Wavepath Migration versus Kirchhoff Migration
3-D Prestack Examples
2Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- Conclusions
3Forward Modeling
( Xg, 0 )
( Xs, 0 )
43D Kirchhoff Migration
( Xg, 0 )
( Xs, 0 )
53-D KM of a Single Trace
C
B
A
R
S
6Problems in Kirchhoff Migration
Traveltime Information
Where Was Wave Reflected ?
The Whole Fat Ellipsoid !
Problem 1
Problem 2
Strong Far-Field Migration Artifact
Slow for 3-D Iterative Velocity Analysis
7Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- Conclusions
83D Wavepath Migration
( Xg, 0 )
93-D WM of a Single Trace
C
B
A
R
S
10Wavepath Migration
Traveltime Ray Direction
11Key Goals of 3-D WM
- To Achieve Higher CPU Efficiency
- Compared to 3-D KM
-
- To Generate Comparable or Better
- Image Quality than 3-D KM
12Related References
- Time-Map Migration
- Sherrif Geldhart (1985)
- Wave Equation Tomography
- Woodward Rocca (1988)
- Gaussian Beam Migration
- Ross Hill (1990)
- Kirchhoff Beam Migration
- Yonghe Sun et al., (1999)
13Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- Conclusions
14Key Steps in WM
R
S
Quasi-ellipsoid
15Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- 3-D Prestack Point Scatterer Data
- 3-D Prestack SEG/EAGE Salt Data
- 3-D Prestack West Texas Field Data
- Conclusions
163-D Prestack KM Point Scatterer Response
0.1
0.4
Reflectivity
Reflectivity
Z0-9
Z0-1
-0.05
-0.2
1
1
1
1
Y Offset (km)
Y Offset (km)
X Offset (km)
X Offset (km)
0
0
1
0.02
Reflectivity
Reflectivity
Z0
Z08
-0.5
-0.01
1
1
1
1
Y Offset (km)
Y Offset (km)
X Offset (km)
X Offset (km)
0
0
173-D Prestack WM Point Scatterer Response
0.1
0.4
Reflectivity
Reflectivity
Z0-9
Z0-1
-0.05
-0.2
1
1
1
1
Y Offset (km)
Y Offset (km)
X Offset (km)
X Offset (km)
0
0
1
0.02
Reflectivity
Reflectivity
Z0
Z08
-0.5
-0.01
1
1
1
1
Y Offset (km)
Y Offset (km)
X Offset (km)
X Offset (km)
0
0
18Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- 3-D Prestack Point Scatterer Data
- 3-D Prestack SEG/EAGE Salt Data
- 3-D Prestack West Texas Field Data
- Conclusions
19A Common Shot Gather
Trace Number
1
390
0
Time (sec)
5.0
20Inline Velocity Model
Offset (km)
0
9.2
0
Depth (km)
3.8
21Inline KM (CPU1)
Inline WM (CPU1/33)
Offset (km)
Offset (km)
0
9.2
0
9.2
0
Depth (km)
3.8
22Inline KM (CPU1)
Inline WM (CPU1/170)
(subsample)
Offset (km)
Offset (km)
0
9.2
0
9.2
0
Depth (km)
3.8
23Zoom Views of Inline Sections
WM
KM
Sub WM
Model
Offset 36.5 km, Depth 0.31.8 km
24Zoom Views of Crossline Sections
WM
KM
Sub WM
Model
Offset 1.84 km, Depth 0.62.1 km
25Horizontal Slices (Depth1.4 km)
WM
KM
Sub WM
Model
Inline 1.87.2 km, Crossline 04 km
26Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- 3-D Prestack Point Scatterer Data
- 3-D Prestack SEG/EAGE Salt Data
- 3-D Prestack West Texas Field Data
- Conclusions
27A Common Shot Gather
Trace Number
54
193
0
Time (sec)
3.4
28Inline KM (CPU1)
Inline WM (CPU1/14)
Offset (km)
Offset (km)
0.4
4.5
0.4
4.5
0.8
Depth (km)
3.8
29Inline KM (CPU1)
Inline WM (CPU1/50)
(subsample)
Offset (km)
Offset (km)
0.4
4.5
0.4
4.5
0.8
Depth (km)
3.8
30Crossline KM (CPU1)
Crossline WM (CPU1/14)
Offset (km)
Offset (km)
0.3
3.5
0.3
3.5
0.8
Depth (km)
3.3
31Crossline KM (CPU1)
Crossline WM (CPU1/50)
(subsample)
Offset (km)
Offset (km)
0.3
3.5
0.3
3.5
0.8
Depth (km)
3.3
32Horizontal Slices (Depth2.5 km)
WM (Sub, CPU1/50)
KM (CPU1)
WM (CPU1/14)
Inline 04.6 km, Crossline 03.8
33Outline
- Problems in Kirchhoff Migration
- Wavepath Migration
- Implementation of WM
- Numerical Results
- Conclusions
34Conclusions
- SEG/EAGE Salt Data
- Fewer Migration Artifacts
- Better for Complex Salt Boundary
- Higher Computational Efficiency
- CPU
- KM 1 WM 1/33
- Subsampled WM 1/170
35Conclusions
- West Texas Field Data
- Fewer Migration Artifacts
- Similar Image Quality
- Higher Computational Efficiency
- CPU
- KM 1 WM 1/14
- Subsampled WM 1/50
36 Acknowledgements
We thank UTAM sponsors for their financial support