How To Solve Poisson Equation with Neumann Boundary Values - PowerPoint PPT Presentation

About This Presentation
Title:

How To Solve Poisson Equation with Neumann Boundary Values

Description:

Singular and Solvability Check. Spectrum with a zero eigenvalue. Strategy I: Fix one point ... Solvability check: (b,e)=0, Re-orthogonalization: b=b-(b,e)/(e,e) ... – PowerPoint PPT presentation

Number of Views:110
Avg rating:3.0/5.0
Slides: 38
Provided by: w3P
Category:

less

Transcript and Presenter's Notes

Title: How To Solve Poisson Equation with Neumann Boundary Values


1
How To Solve Poisson Equation with Neumann
Boundary Values
  • Jin Chen
  • CPPG

2
Background
3
Outlines
  • Characteristics of Neumann Boundary Values
  • Numerical singularity of such Boundary Values
  • Null Space method for such singularity
  • CG and GMRES for non-singular linear equation
  • Null Space based CG and GMRES for singular linear
    equation
  • Application to eigenvalue problem
  • Application to M3D

4
Characteristics of Neumann Boundary Values
  • Solvability
  • not every system of equation has a solution.
  • Unique
  • if u is a solution, so is u c.

5
Eigenvalues of the Poisson Equation with Neumann
BV
6
Is there anything we can do?
  • Lets assume A is non-singular FIRST.
  • Direct solver
  • Iterative solver
  • Krylov Subspace Methods.

7
Iterative solver
8
Krylov Subspace Methods
  • Conjugate Gradient (CG)
  • symmetric positive definite matrix
  • Generalized Minimal Residual (GMRES)
  • non-symmetric indefinite matrix

9
CG
10
GMRES
11
Numerical Complexity
Methods Inner Product SAXPY Matrix-Vector Product
CG 2 3 1
GMRES i1 i1 1
Methods Storage requirements
CG Matrix6n
GMRES Matrix(i5)n
12
If A is singular
13
Definition of Null Space
14
Null Space
15
CG for singular systems
16
(No Transcript)
17
(No Transcript)
18
If
19
If
20
If
21
If
22
If
Re-orthogonlization
To assure there exists a solution.
23
GMRES for singular systems
24
GMRES for singular systems
25
(No Transcript)
26
Numerical Experiment
27
Matrix Structure
28
Singular and Solvability Check
29
Spectrum with a zero eigenvalue
30
Strategy I Fix one point
Spectrum shift
31
Spectrum shift by one point fixing
You are solving an approximate problem !!!
32
Eigenmode k2, l0
33
Strategy II null space
34
Eigenmode k2 l0
35
Eigenmode k3, l0
36
Application in M3D
  • F equation,
  • Singular check Ae0,
  • Solvability check (b,e)0,
  • Re-orthogonalization bb-(b,e)/(e,e),
  • Uniqueness check (x,e)0,
  • CG with nullspace,
  • GMRES with nullspace,

37
If you want to try it
I am happy to help you
38
Eigenvalues for Poisson Equation
39
Dirichlet Boundary Values
40
Neumann Boundary Values
41
Krylov Subspace Methods
42
Matrix Representation of Krylov Subspace Methods
43
Krylov Subspace Methods
  • CG
  • symmetric positive definite matrix
  • GMRES
  • non-symmetric indefinite matrix

44
(No Transcript)
45
How to interpret poisson equation
Neumann correspond to a solid boundary which
fluid cannot penetrate. www.math.umn.edu/olver/a
ppl_/
46
(No Transcript)
47
Matrix Structure
48
Eigenvalues via grid resolution
You are solving a different problem !!!
Write a Comment
User Comments (0)
About PowerShow.com