Title: How To Solve Poisson Equation with Neumann Boundary Values
1How To Solve Poisson Equation with Neumann
Boundary Values
2Background
3Outlines
- Characteristics of Neumann Boundary Values
- Numerical singularity of such Boundary Values
- Null Space method for such singularity
- CG and GMRES for non-singular linear equation
- Null Space based CG and GMRES for singular linear
equation - Application to eigenvalue problem
- Application to M3D
4Characteristics of Neumann Boundary Values
- Solvability
- not every system of equation has a solution.
- Unique
- if u is a solution, so is u c.
5Eigenvalues of the Poisson Equation with Neumann
BV
6Is there anything we can do?
- Lets assume A is non-singular FIRST.
- Direct solver
- Iterative solver
- Krylov Subspace Methods.
7Iterative solver
8Krylov Subspace Methods
- Conjugate Gradient (CG)
- symmetric positive definite matrix
- Generalized Minimal Residual (GMRES)
- non-symmetric indefinite matrix
9CG
10GMRES
11Numerical Complexity
Methods Inner Product SAXPY Matrix-Vector Product
CG 2 3 1
GMRES i1 i1 1
Methods Storage requirements
CG Matrix6n
GMRES Matrix(i5)n
12If A is singular
13Definition of Null Space
14Null Space
15CG for singular systems
16(No Transcript)
17(No Transcript)
18If
19If
20If
21If
22If
Re-orthogonlization
To assure there exists a solution.
23GMRES for singular systems
24GMRES for singular systems
25(No Transcript)
26Numerical Experiment
27Matrix Structure
28Singular and Solvability Check
29Spectrum with a zero eigenvalue
30Strategy I Fix one point
Spectrum shift
31Spectrum shift by one point fixing
You are solving an approximate problem !!!
32Eigenmode k2, l0
33Strategy II null space
34Eigenmode k2 l0
35Eigenmode k3, l0
36Application in M3D
- F equation,
- Singular check Ae0,
- Solvability check (b,e)0,
- Re-orthogonalization bb-(b,e)/(e,e),
- Uniqueness check (x,e)0,
- CG with nullspace,
- GMRES with nullspace,
37If you want to try it
I am happy to help you
38Eigenvalues for Poisson Equation
39Dirichlet Boundary Values
40Neumann Boundary Values
41Krylov Subspace Methods
42Matrix Representation of Krylov Subspace Methods
43Krylov Subspace Methods
- CG
- symmetric positive definite matrix
- GMRES
- non-symmetric indefinite matrix
44(No Transcript)
45How to interpret poisson equation
Neumann correspond to a solid boundary which
fluid cannot penetrate. www.math.umn.edu/olver/a
ppl_/
46(No Transcript)
47Matrix Structure
48Eigenvalues via grid resolution
You are solving a different problem !!!