Title: Acknowledgement
1Acknowledgement
- The author would like to acknowledge
contributions from Jiquan Chen, Asko Noormets,
and Steve McNulty, PIs for an ongoing Carbon and
Water Flux in Eastern US and China. - Data presented have not been published unless
referenced. Do not cite without permission from
the PIs.
2Estimating Forest Ecosystem Evapotranspiration at
Multiple Scales
Ge Sun (Ge_Sun_at_ncsu.edu) Southern Global Change
Program, USDA Forest Service, Raleigh, NC
3Outline
- Why Evapotranspiration (ET) is important?
- Challenges in quantifying ET.
- Examples in estimating ET at multiple scales
using simulation models SE US, Northern
Wisconsin and Toledo
4Importance of ET
- Second largest hydrologic component
- Linked to ecosystem productivity
- Linked to biodiversity
- Sensitive to landuse and climate changes
5What is ET?
Vegetation and forest floor (It)
E
ET E It T
6The Hydrologic Cycle
7ET- the second largest flux of the water budget
USA
Global
Pg 760 mm ET 530 mm (70 of Pg) Q 230
mm (30 of Pg) Delta S 0 mm
Pg 730 mm ET 470 mm (64 of Pg) Q 260 mm
(36 of Pg) Delta S 0 mm
8ET -- a necessary Evil
9Why ET is Important (Law et al, 2002 Agr. For.
Meteorology)?
10Ecosystem Productivity ( from M.L. Rosenzweig,
1968. Net Primary Productivity of Terrestrial
Community Prediction from Climate Data)
11(No Transcript)
12The Coupled Water and Energy Balance
13Future Climate Change
14Temperature Trends (19011998)
3o C
- 3o C
Source The Impact of Climate Change on
Americas Forests, Joyce Birdsey, 2000
15Precipitation Trends (1901 1998)
Source The Impact of Climate Change on
Americas Forests, Joyce Birdsey, 2000
16Ozone Effects on Tree Transpiration and Lowflow
Aug-Oct Baseflow 52.8265 0.11099 Ppt810
0.9376 O3avDmx1.61061 O3G60 1.35898 PDSI810
17Methods for Estimating ET
- Water Budget
- Eddy Covariance
- Remote Sensing
- Mathematical modeling
18Estimating ET Using the Evaporation Pan (Class A
Pan)
- 10 inches deep, 48 inches in diameter sit on a
wooden platform - Filled with water to 8
inches - Lake evaporation 0.7 Pan E -
Actual ET Reference Crop Coefficient Epan
19Estimating ET Using the Water Balance Method
For short period such as daily, monthly ?S
varies for several years, ?S 0 then annual
ET Pg - Q
20Measuring Streamflow at a Gaging Station
21Estimated Annual ET from Forested Watersheds, NC
22Forested Wetlands Water Balance
23Groundwater/Surface Water/Forest Interactions
24Spatial Distribution of ET
25Methods for Estimating ET
- Water Budget
- Eddy Covariance
- Mathematical modeling
26(No Transcript)
27Study area
28Net Exchange of VaporTheory
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34Energy Balances (RnSLEG)
Year Ecosystems Regression equation R2 N (days)
2002 Energy balance MHW SLEG 0.493 0.568 Rn 0.63 171
2002 Energy balance MRP SLEG 3.5121.272 Rn 0.82 163
2002 Energy balance YHW SLEG 0.2890.566 Rn 0.85 169
2002 Energy balance YRP SLEG -0.001420.557 Rn 0.72 179
2002 Energy balance PB SLEG 0.3670.603 Rn 0.80 178
2003 Energy balance MHW SLEG0.167 0.598 Rn 0.35 114
2003 Energy balance MRP SLEG1.611 0.479 Rn 0.66 121
2003 Energy balance IHW SLEG1.181 0.533 Rn 0.62 107
2003 Energy balance IRP SLEG0.750 0.618 Rn 0.64 110
2003 Energy balance PB SLEG -0.752 0.505 Rn 0.85 145
2002 LE MHW LE0.903 0.260 Rn 0.29 170
2002 LE MRP LE1.869 0.205 Rn 0.28 163
2002 LE YHW LE1.210 0.258 Rn 0.43 169
2002 LE YRP LE1.323 0.240 Rn 0.29 179
2002 LE PB LE1.323 0.221 Rn 0.31 178
2003 LE MHW LE0.914 0.341 Rn 0.15 146
2003 LE MRP LE1.790 0.175 Rn 0.19 134
2003 LE IHW LE1.055 0.272 Rn 0.23 154
2003 LE IRP LE2.193 0.170 Rn 0.11 124
2003 LE PB LE0.469 0.235 Rn 0.32 149
35Methods for Estimating ET
- Mathematical modeling
- at multiple temporal (annual, monthly, daily )
and spatial scales (regional, stand, tree)
36Estimating ET using Penman-Montheith Equation
- Penman-Montheith Method Radiation based, most
accurate prediction of Etp from forest ecosystem
Where, Etp potential ET (cm/s) L latent heat
(cal/g) Rn net solar radiation (ly/s) ? slope
of saturated vapor pressure-temperature curve,
mb/oC ?a air density (g/cm3) Cpa specific
heat of dry air (0.000242 cal/g oC) esz
saturated vapor pressure at height z (mb) ez
vapor pressure at height z (mb) ? psychmetric
constant (0.0657 mb/oC) ra atmospheric
diffusion resistance (s/cm) rs stomatal
resistance (s/cm)
37AET General model (Zhang et al., 2001, Water
Resources Research)
For mixed landuse watershed
P annual precip, PETpotential ET DefaultW 2.0
for forests, 0.5 for grass land
38Watershed distribution
39(No Transcript)
40(No Transcript)
41(No Transcript)
42The PnET Model
WATER
CARBON/NITROGEN
2
1
17
11
FOLIAR CANOPY
12
4
3
13
WOOD C/N
PLANT C/N
7
8
5
SNOW
BUD C/N
10
14
9
6
23
16
15
FINE ROOT
21
WOOD
NH4 NO3
SOIL WATER
24
20
19
22
18
SOIL
43Simulated Monthly Forest ET by 13 Ecosystem
Models
44The MIKE SHE Watershed Model (DHI, 2004)
45Transpiration
Precip
Interception
Evaporation
Unsaturated water flow
Groundwater flow
46Evapotranspiration
- Kristensen and Jensen Method
- Reference ET based on FAO Penman-Monteith model
- AETCanopy InterceptionSoil E Plan T
- Canopy Interceptionf(LAI)
- Plan T f(LAI, Rooting Depth, Soil Moisture)
- Soil Ef(LAI,PET, S Moisture)
47Unsaturated Water Movement (3 options)
- 1-D Richards Equation
- Require soil moisture release data
- Gravity flow (Vertical unit gradient)
- Require soil moisture release data
- Simple two-layer water balance
- Does not require soil moisture release data
- Require field capacity, porosity, wilting points
48Saturated Water Movement
- 3-D Finite Difference Method
- Geological layering
- Hydraulic conductivity, Specific yield (storage
coefficients)
49Modeled Daily ET, Red PineNorthern Wisconsin
50Modeled Daily ET, Mature HardwoodNorthern
Wisconsin
51Modeled Daily ET, Pine BarrenNorthern Wisconsin
52Simulated Monthly ET of Three Ecosystems Northern
Wisconsin
53Oak Opening Ecosystem, Toledo, OHEstablished in
Winter 2003
54Simulated Groundwater TableOak Opening, Toledo
(April-Oct 2004)
Ground surface
55Simulated Soil Moisture ContentOak Opening,
Toledo (April-Oct 2004)
56Simulated Daily EvapotranspirationOak Opening,
Toledo (April-Oct 2004)
57Concluding Remarks
- ET is one important variable that links the
atmospheric, the biological, ecological, and the
hydrological processes at multiple scales. - Quantifying ET remains challenging physical and
biological control on ET. - Combining field measurements and mathematical
modeling appears to be powerful in estimating ET
at multiple scales.