Symbolically Computing MostPrecise Abstract Operations for Shape Analysis - PowerPoint PPT Presentation

1 / 47
About This Presentation
Title:

Symbolically Computing MostPrecise Abstract Operations for Shape Analysis

Description:

phase 1: node materialization. while there is SW with p(u)=1/2 do ... Example - Materialization. materialization. u2 uy, u2. y(uy) = 1, y(u2) =0. x. u1. u2. c,rx ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 48
Provided by: gre115
Category:

less

Transcript and Presenter's Notes

Title: Symbolically Computing MostPrecise Abstract Operations for Shape Analysis


1
Symbolically Computing Most-Precise Abstract
Operations for Shape Analysis
Greta Yorsh Joint work with Thomas Reps Mooly
Sagiv
2
Why use theorem prover?
  • Guarantee the most-precise result w.r.t. the
    abstraction
  • Modular reasoning
  • assume guarantee reasoning
  • scalability

3
Outline
  • Background
  • The assume Operation
  • The assume Algorithm
  • canonical abstraction
  • Main Results
  • Future Work


4
Shape Analysis
  • Static program analysis
  • Determine shape invariants
  • Verify programs (partially)
  • Detect memory errors
  • Prove properties about dynamically allocated data
  • Detect logical errors
  • Code optimizations
  • Abstract Interpretation CC77
  • Galois Connection (?, ?)

5
Concretization Function ?
Concrete Domain
Abstract Domain
6
Abstraction Function ?
C
Concrete Domain
Abstract Domain
7
Galois Connection (?, ?)
?
?(C)
C
Concrete Domain
Abstract Domain
8
Most Precise Abstract Value
?
?
?(C)
C
Concrete Domain
Abstract Domain
9
New Approach
  • Use symbolic techniques in abstract
    interpretation
  • For shape analysis
  • For other abstract domains
  • What does it mean to employ decision
    procedure/theorem prover for shape analysis?
  • symbolic concretization
  • decision procedure for satisfiability

10
Symbolic Concretization ?(a)

a1
a2
Formulas
Concrete Domain
Abstract Domain
11
Outline
?
  • Background
  • The assume Operation
  • The assume Algorithm
  • canonical abstraction
  • Main Results
  • Future Work


12
Assume-Guarantee Reasoning
T bar() void foo() T p ... p
bar() ...
prebar, postbar prefoo, postfoo assumepre
foo assertprebar ----------- assumepost
bar assertpostfoo
lttopgt
lta1gt
lta2gt
lta3gt
lta4gt
13
The assume?(a) Operation
a
?(a)
X
?
Formulas
Concrete Domain
Abstract Domain
14
The assume?(a) Operation
a
?(a)
?(X)
?
assume?(a)
X
?
Concrete Domain
Abstract Domain
15
The assume?(a) Operation
a
?(a)
?
?(X)
?
assume?(a)
X
?
Concrete Domain
Abstract Domain
16
Outline
?
  • Shape Analysis
  • The assume Operation
  • The assume Algorithm
  • canonical abstraction
  • Main Results
  • Future Work

?

17
The assume?(a) Algorithm

a
?(a)
X
?
Concrete Domain
Abstract Domain
18
The assume?(a) Algorithm

a
?(a)
X
?
Concrete Domain
Abstract Domain
19
The assume?(a) Algorithm

a
?(a)
X
?
Concrete Domain
Abstract Domain
20
The assume?(a) Algorithm

a
?(a)
?(X)
assume?(a)
X
?
Concrete Domain
Abstract Domain
21
Outline
?
  • Shape Analysis
  • The assume Operation
  • The assume Algorithm
  • canonical abstraction
  • Main Results
  • Future Work

?

22
Abstraction Function ?
?(C) ?(S) S ? C
?
?(C)
C
sets of 3-valued logical structures
2-valuedlogical structures
Concrete Domain
Abstract Domain
23
Describing Heap Using Logical Structure
  • Definition of linked list
  • Cyclic linked list of length 4 pointed to by
    variable x
  • structure S lt U, x, n, rxgt
  • universe U u1, u2, u3, u4,
  • unary relation x u1
  • binary relation n lt u1, u2gt, lt u2, u3 gt, lt
    u3, u4gt, ltu4,u1gt
  • unary relation rx u1, u2, u3, u4
  • unary relation c u1, u2, u3, u4

struct List int d struct List n
x
24
3-Valued Logical Structures
  • Relation meaning over 0, 1, ½
  • Kleene
  • 1 True
  • 0 False
  • ½ Unknown
  • A join semi-lattice 0 ? 1 ½

25
Canonical Abstraction ?
u1
u2
u3
u4
c,rx
c,rx
c,rx
c,rx
u2 summary node
u2
u1
26
Canonical Abstraction ?
u1
u2
u3
u4
c,rx
c,rx
c,rx
c,rx
?
u2 summary node
  • Unary relations have definite values

27
Concretization Function ?

?(a)
a
?(a)
?a ? ?v1,v2nodeu1(v1)?nodeu2(v2) ??w
nodeu1(w)?nodeu2(w) ? ?w1,w2nodeu1(w1)?nodeu1(w2)
?(w1w2)??n(w1,w2)
Formulas
Concrete Domain
Abstract Domain
28
Concretization Function ?
IR uniquex ? functionn ?
reachablex ? cyclicn

?(a)
a
?(a)
uniquex ? ?v1,v2x(v1)?x(v2)?v1v2
Formulas
functionn ? ?v,v1,v2n(v,v1)?n(v,v2)?v1v2
Concrete Domain
Abstract Domain
reachablex ? ?vrx(v)??v1 x(v1) ? n(v1,v)
cyclicn ? ?vc(v)??v1n(v,v1)?n(v1,v)
29
Outline
?
  • Shape Analysis
  • The assume Operation
  • The assume Algorithm
  • canonical abstraction
  • Main Results
  • Future Work

?

?
30
Example
a
? ? ?v1y(v1) ??v2 x(v2) ? n(v1, v2)
x
u2
u1
yx-gtn
c,rx
c,rx
IR uniquex ? uniquey ?
reachablex ? reachabley ? cyclicn
? functionn
31
The assume?(a) Algorithm


assume?(a) set of 3-valued structures //
initialization for all S?a if ?(S)? ? is
satisfiable then W?S // phase 1 node
materialization while there is S?W with p(u)1/2
do duplicate nodes and deduce their unary
relations using calls to theorem prover //
phase 2 relation refinement while there is S?W
with p(u1,u2)1/2 do duplicate structures and
deduce their binary relations using calls to
theorem prover return W

32
Example - Materialization
S
x
u2
u1
c,rx
c,rx
materialization u2 ? uy, u2 y(uy) 1, y(u2) 0
33
Example - Materialization
x
uy
u1
u2
ry
ry
y
rx
y
c,rx
c,rx
y,ry
34
Example Refinement
x
uy
u1
u2
c,rx ry
y
c,rx ry
c,rxry
n(u2,uy)
35
Example
a
? ? ?v1y(v1) ??v2 x(v2) ? n(v1, v2)
x
u2
u1
yx-gtn
c,rx
c,rx
IR uniquex ? uniquey ?
reachablex ? reachabley ? cyclicn
? functionn
x
x
u2
uy
uy
u1
u1
c,rx ry
c,rx ry
c,rx ry
c,rx ry
c,rx ry
y
y
36
Algorithm
  • assume?(a) set of 3-valued structures
  • for all S?a
  • if ?(S)?? is satisfiable then W?S
  • // phase 1 materialization
  • while there is S?W with p(u)1/2 do
  • W?W/S
  • if ?(S)????p,u is satisfiable then W?S'
  • if ?(S0)?? is satisfiable then W?S0
  • if ?(S1)?? is satisfiable then W?S1
  • // phase 2 relation refinement
  • while there is S?W with p(u1,u2)1/2 do
  • if ?(S)????p,u1,u2 is not satisfiable then
    W?W/S
  • if ?(S0)?? is satisfiable then W?S0
  • if ?(S1)?? is satisfiable then W?S1
  • return W








37
Theorem Prover
  • Satisfiability of FOTC
  • Calls to theorem prover need not terminate
  • Experience with SPASS
  • Solutions ?

38
SPASS Experience
  • Handles arbitrary FO formulas
  • Can diverge
  • Converges in our examples
  • Captures older shape analysis algorithms
  • How to handle FOTC?
  • Overapproximations are not good enough
  • Lead to too many structures

39
Theorem Prover
  • Satisfiability of FOTC
  • Calls to theorem prover need not terminate
  • Experience with SPASS
  • Solutions
  • timeout and return ½
  • decidable logic
  • Bad news
  • Even ??TC is undecidable
  • Reduction to halting problem

40
??DTCE Logic
  • Neil Immerman, Alexander Rabinovich
  • ??DTCE is subset of FOTC
  • ?? form
  • arbitrary unary relations
  • single binary relation E
  • deterministic transitive closure E(v,w)
  • E-path through individuals with at most one
    successor
  • Decidable for satisfiability
  • NEXPTIME-complete

41
Simulation Technique
  • Simulate regular data structures using ??DTCE
  • Singly linked list
  • shared/cyclic/nested
  • Doubly linked list
  • (Shared) Trees
  • Preserved under mutations

42
Outline
?
  • Shape Analysis
  • The assume Operation
  • The assume Algorithm
  • canonical abstraction
  • Main Results
  • Future Work

?

?
?
43
Most-precise Operations
  • Most-precise abstract value
  • Best transformer
  • statement
  • loop-free fragment

44
Best Transformer BT(a,t)
C
t
a
Concrete Domain
Abstract Domain
45
Most-precise Operations
  • Most-precise abstract value
  • Best transformer
  • statement
  • loop-free fragment
  • Meet operation
  • Assume guarantee reasoning
  • procedure specifications

46
Conclusions
  • Employ decision procedure/theorem prover for
    shape analysis
  • most precise
  • modular - assume guarantee reasoning

47
Future Work
  • Implementation
  • Assume guarantee of real programs
  • specification language
  • write procedure specifications
  • Extend to other domains

48
THE END
Write a Comment
User Comments (0)
About PowerShow.com