Chapter 3 Methods of Analysis - PowerPoint PPT Presentation

1 / 58
About This Presentation
Title:

Chapter 3 Methods of Analysis

Description:

1. MM/July2006. 1. Chapter 3 (Methods of Analysis) Contents. Nodal analysis ... Vx 3Vx 6i3 -20 = 0. but 6i3 = V3 V2 -2V1 V2 V3 2V4 = 20 ---- (5) ... – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 59
Provided by: Win6209
Category:

less

Transcript and Presenter's Notes

Title: Chapter 3 Methods of Analysis


1
Chapter 3 (Methods of Analysis)
2
Contents
  • Nodal analysis
  • Mesh analysis

3
Nodal analysis
4
  • Node is the point of connection between two or
    more branches.
  • The above circuit have 4 node.

5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
Basic Step
  • Mark the nodes
  • Reference node
  • Decide on number equations required
  • Perform KCL at the selected nodes
  • Solve the equation

9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
Example 3.1- Calculate node voltages and currents
in circuit shown
  • Applying KCL Ohms law
  • Node1
  • .
  • .
  • Node 2
  • .
  • .

13
Method 1- Elimination technique
  • (1) (2)
  • 4V2 80
  • V2 20V ----(3)
  • Insert equ (3) into (1)
  • 3V1 20 20
  • V1 13.333V

14
Method 2- Crammers rule
  • 3V1 V2 20
  • -3V1 5V2 60
  • Determinant
  • V1?1/ ?
  • V2?2/ ?

15
  • For current
  • i1 5A
  • i4 10A
  • i2 (V1-V2)/4 -1.6667A
  • i3 V1/ 2 6.666A
  • i5 V2/6 3.333A

16
P.P 3.1- Find node voltages
17
Example
  • Find the node voltages

18
(No Transcript)
19
Example 3.2 Find node voltages
  • Node 1
  • 12 3V1 2V2 V3
  • Node 2
  • 0 - 4V1 7V2 V3
  • Node 3
  • where
  • 0 2V1 3V2 V3

20
  • 12 3V1 2V2 V3
  • 0 - 4V1 7V2 V3
  • 0 2V1 3V2 V3

V3?3/ ?
V1?1/ ?
V2?2/ ?
21
  • 3(7-3) 4 (- 2 3) 2 (2 7)
  • 10
  • 48

22
  • 24
  • - 24
  • V1 48/10 4.8V V2 24/10 2.4V
  • V3 -24/10 -2.4V

23
P.P 3.2 Find node voltages
  • Node 1
  • Node 2
  • Node 3

24
Nodal analysis with voltage sources
A supernode is formed by enclosing a (dependent
or independent) voltage source connected between
two nonreference nodes and any elements connected
in parallel with it
25
Nodal analysis with voltage sources
  • Apply both KCL KVL
  • to determine the node
  • voltage

26
  • At supernode
  • KCL

27
  • KVL
  • -V2 5 V3 0
  • V2 V3 5

28
Example 3.3 Find node voltages
  • Supernode 2V 10?
  • KCL
  • .
  • .
  • .
  • 2V1 V2 - 20 ---- (1)

29
  • KVL
  • -V1 2 V2 0
  • V2 V1 2 ----(2)
  • From equ (1) (2)
  • V1 -7.333 V
  • V2 - 5.333 V

30
Example 3.4 Find node voltage in the circuit
  • Node 1 2 supernode
  • Node 3 4 supernode
  • Supernode 1 2
  • 10 i3 i1 i2
  • 60 5V1 V2 V3 - 2V4
  • ----- (1)

31
  • Supernode 3 4
  • i1 i3 i4 i5
  • 4V1 2V2 5V3 -16V4 0
  • ---- (2)

32
  • KVL
  • Loop 1
  • -V1 20 V2 0
  • V1-V2 20 ---- (3)
  • Loop 2
  • -V3 3Vx V4 0
  • but Vx V1-V4
  • 3V1 V3 2V4 0 ---- (4)
  • Loop 3
  • Vx 3Vx 6i3 -20 0
  • but 6i3 V3 V2
  • -2V1 V2 V3 2V4 20 ---- (5)

33
  • Four voltages V1, V2, V3 V4 require four
  • out of five equation. Use equ (1) to (4), equ
  • (5) used to check results
  • From equ (3)
  • V2 V1 20
  • Substitute in equ (1) (2)
  • 60 5V1 (V1-20) V3 2V4
  • 80 6V1 V3 2V4 ---- (6)

34
  • 4V1 2 (V1 - 20) 5V3 16V4 0
  • 6V1 5V3 -16V4 40 ---- (7)
  • From equ. (4), (6) (7), we get
  • 3V1 V3 2V4 0
  • 80 6V1 V3 2V4
  • 6V1 5V3 -16V4 40

35
  • By using Crammers rule or calculator, the
  • answers are -
  • V1 26.667V
  • V3 173.333V
  • V4 -46.667V
  • V2 6.667V

36
Mesh analysis
37
  • Nodal analysis applies KLC to find unknown
    voltages
  • Mesh analysis- applies KVL to find unknown
    currents.

A mesh is a loop which does not contain any other
loops within it
38
Basic Steps
  • Label all meshes in the circuit with a clockwise
    mesh current
  • Decide on number equations required
  • Perform KVL at the each meshes
  • Solve the equation

39
  • KVL
  • Mesh 1
  • -V1 R1i1 R3 (i1-i2) 0
  • (R1R3)i1 R3i2 V1
  • Mesh 2
  • R2i2 V2 R3(i2-i1) 0
  • -R3i1 (R2R3)i2 -V2

40
Example 3.5 Find current branch i1, i2 i3
  • KVL
  • Mesh 1
  • -155i110(i1-i2)10 0
  • 3i1 2i2 1 ---- (1)
  • Mesh 2
  • 6i2 4i2 -10 10 (i2-i1) 0
  • i1 2i2 -1 ---- (2)

41
Method 1 Substitution method
  • 3i1 2i2 1 ---- (1)
  • i1 2i2 -1 ---- (2)
  • Substitute equ (2) into (1)
  • 6i2 3 2 i2 1
  • i2 1A
  • From equ (2)
  • i1 2(1) 1 1A
  • For i3
  • i1 i2 i3
  • i3 i1 i2 0

42
Method 2 Cramers rule
43
Example 3.6 use mesh analysis to find i0
  • KVL
  • Mesh 1
  • -24 10(i1-i2) 12(i1-i3) 0
  • Mesh 2
  • 24i2 4(i2-i3) 10(i2-i3) 0
  • Mesh 3
  • 4i0 12(i3-i1) 4(i3 i2) 0
  • For i0
  • io i1 i2

44
P.P 3.6
45
(No Transcript)
46
Problem 3.51- Applying mesh to find V0
47
Mesh analysis with current sources
A supermesh results when two meshes have a
(dependent or independent) current source in
common
48
Example
49
  • Applying KVL to supermesh
  • -20 6i1 10i2 4i2 0
  • 6i1 14i2 20

50
  • Applying KCL to node 0
  • i2 i1 6

51
  • Solving equation, we get
  • i1 -3.2A
  • i2 2.8A

52
P.P 3.7
  • Use mesh analysis to determine i1,i2 i3

53
answer
  • i1 3.474A
  • i2 473.7 mA
  • i3 1.1052A

54
Using mesh analysis to find currents i1 i2
55
answer
  • i1 1.072A and i2 2.041A

56
Using mesh analysis, find V0 and i0 for fig.
shown below
57
Find the mesh currents i1 to i3 in the network of
fig. below
58
For fig. shown below, find i1 to i4 using mesh
analysis
Write a Comment
User Comments (0)
About PowerShow.com