Lightweight Algorithms for a CBM L1-Trigger - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Lightweight Algorithms for a CBM L1-Trigger

Description:

Contents. STS Tracking. Hough Transform. MAPS Tracking. Kalman Filter ... predict position in previous layer xk = ak-1 zk2 bk-1 zk ck-1 ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 21
Provided by: inform3
Category:

less

Transcript and Presenter's Notes

Title: Lightweight Algorithms for a CBM L1-Trigger


1
Lightweight Algorithms for a CBM L1-Trigger
  • Joachim Gläß
  • Computer Engineering, University of Mannheim
  • Contents
  • STS Tracking
  • Hough Transform
  • MAPS Tracking
  • Kalman Filter

September 9, 2004 Second FutureDAQ Workshop
2
CBM STS Detector
  • Silicon Tracking System
  • 7 detector layers inside the dipole magnet gap
  • max. 7 x, y, z-coordinates per track
  • up to 1000 tracks
  • mean interaction rate
  • ca. 107 events/second
  • online tracking for
  • L1-trigger

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
3
STS TrackingHough-Transform of Parabolas
ltgt
rotated by q
2 (z sinq x cosq)
1

homogenous magnetic field 1 T
0.3
(z cosq x sinq)2
Pz
Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
4
STS TrackingHough-Transform of Parabolas
ltgt
rotated by q
2 (z sinq x cosq)
1

homogenous magnetic field 1 T
0.3
(z cosq x sinq)2
Pz
Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
5
STS TrackingHough-Transform of Parabolas
ltgt
rotated by q
2 (z sinq x cosq)
1

homogenous magnetic field 1 T
0.3
(z cosq x sinq)2
Pz
Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
6
STS Tracking3-D Hough-Histogram
  • According to the three parameters of a track
  • bending 1/Pz, angles q and g (Px/Pz, Py/Pz)
  • g detector slice corresponds to one 2-D
    Hough-histogram
  • g planes are overlapping (multiple scattering)

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
7
STS TrackingHW Implementation
  • Decomposition of a 3D Hough transform in several
    2D Hough transforms
  • 1. step
  • sorting according to starting angle g with
    overlap (perpendicular to magnetic field)
  • gt about straight line
  • store hits according to (overlapping) g slices

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
8
STS TrackingHW Implementation
  • Decomposition of a 3D Hough transform in several
    2D Hough transforms
  • 1. step
  • sorting according to starting angle g with
    overlap (perpendicular to magnetic field)
  • gt about straight line
  • store hits according to (overlapping) g slices
  • 2. step
  • 2D Hough histogram
  • calculate subsequent or in parallel

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
9
STS TrackingHW Implementation
  • possible implementation of 2D Hough histogram
    using FPGA and LUT
  • input data -gt LUT -gt Hough curve
  • systolic processing gt code curve with few bits
  • 31 x 95 gt start 7 bits, 1 bit/row gt 37 bits
  • logic cells for Hough histogram 25,000 30,000
  • logic cells for peak search 5,000
  • logic cells for LUT initialisation and
    access 5,000
  • external memory 8 x (1M x 16)

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
10
STS TrackingHW Implementation
  • Processing speed (rough estimations)
  • 1 hit/cycle
  • e.g. 10 Gb/s link with 64 bit/hit
  • gt 150 x 106 hits/s
  • 1 hit/cycle gt 150 MHz
  • 1500 to 10000 hits/event gt 10µs to 100µs
  • total number of processing units
  • ca. 200 x 10 Gb/s links needed for STS
  • gt ca. 200 units

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
11
STS TrackingSimulation Results
  • Efficiency
  • e found tracks/all tracks with P gt 1GeV/c
  • g ghost tracks/processed tracks
  • i identified tracks/processed tracks
  • 31 x 95 x 383 e 95 , g 25 , i 45
  • 63 x 191 x 255 e 93 , g 12 , i 65

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
12
STS TrackingSimulation Results
  • Precision of the reconstructed momentum
  • 63 x 191 x 255

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
13
STS TrackingOutlook
  • 2 layers MAPS, 5 layers STS
  • 7 layers STS
  • 63 x 191 x 255 e 93 , g 12 , i 65
  • 5 layers STS (layer 3 to 7) tune peak shaping and
    peak finding
  • 63 x 191 x 255 e 96 , g 32 , i 45

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
14
STS TrackingOutlook
  • Strip Detektors
  • Hough curve -gt Hough plane
  • AND perpenticular Hough planes -gt Hough curve
  • stereo angle lt 90 ?

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
15
MAPS TrackingKalman Filter Track Following
  • MAPS layer 1 and 2
  • (monolithic active pixel sensors)
  • high resolution lt 10 µm
  • slow readout gt 10 µs
  • pile up of ca. 100 events
  • Kalman Filter track following
  • track hits from L3 L5 as seed
  • later Hough transform
  • distance predicted real hit
  • gt 95 within 500 µm

100 µm Si
100 µm Si
100 µm Si
Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
16
MAPS TrackingKalman Filter Track Following
  • y-z plane (non-bending) gt straight line
  • y m z c
  • start with m0 y0/z0, c00
  • predict position in previous layer yk mk-1 zk
    ck-1
  • measure position (distance predicted real Dyk)
  • update estimate with measurement
  • mk (((mk-1zk-1)ck-1)-((mk-1zk)ck-1Dyk))/(zk
    -1-zk)
  • ck (((mk-1zk)ck-1Dyk)-(mkzk))
  • noise and error covariance are chosen to
    believe the latest measurement
  • yk, mk, ck are function of mk-1, ck-1 and Dyk
  • Dyk lt 500 µm gt needs few bits to code



Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
17
MAPS TrackingKalman Filter Track Following
  • x-z plane (magnetic field) gt parabola
  • x a z2 b z c
  • start with a0, b0 from hits in layer 3, 4, 5 (or
    Hough-Transform), c00
  • predict position in previous layer xk ak-1 zk2
    bk-1 zk ck-1
  • measure position (distance predicted real Dxk)
  • update estimate with measurement
  • ak f(ak-1,bk-1,ck-1,Dxk)
  • bk f(ak-1,bk-1,ck-1,Dxk)
  • ck f(ak-1,bk-1,ck-1,Dxk)
  • xk, ak , bk , ck are function of ak-1 , bk-1 ,
    ck-1 and Dxk
  • Dxk lt 500 µm gt needs few bits to code



Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
18
MAPS TrackingKalman Filter Track Following
  • hits must be in layers 3, 4, 5
  • no binning of data
  • max distance 0.5 mm
  • as function of PZ
  • tracks with lower momentum
  • are worse
  • w/o pileup
  • 98 of hits from same track
  • with pileup
  • no missing hits
  • less hits from same track
  • (ca. 10 )

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
19
MAPS TrackingHardware Challence
  • coefficients and parameters with 10 12 bit
    sufficient
  • no double precision floating point needed
  • old values -gt LUTs -gt adder -gt LUT -gt new value
  • associative hit memory

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
20
Summary
  • Hough Transform
  • global algorithm
  • processing time number of hits
  • possible implementation using FPGA and LUT
  • efficiency ca. 95 of tracks found
  • relatively high ghost rate
  • able to handle strip detectors
  • Kalman Filter
  • MAPS pile up ca. 100 events
  • w/o pile up ca. 98 of nearest hits from same
    track
  • with pile up ca. 88 of nearest hits from same
    track
  • ca. 12 of nearest hits from other events
  • possible implementation using FPGA and LUT
  • simple calculation
  • associative hit memory

Joachim Gläß, Univ. Mannheim, Institute of
Computer Engineering
Write a Comment
User Comments (0)
About PowerShow.com