Title: CHAPTER 2 STATISTICAL FUNDAMENTALS FOR FORECASTING
1CHAPTER 2STATISTICAL FUNDAMENTALS FOR FORECASTING
- THE IMPORTANCE OF PATTERN
- Descriptive and Graphical Tools
- Probability Distributions
- UNIVARIATE SUMMARY STATISTICS
- Using Mean, Median, or Mode
- Properties of Central Values
- Mean Forecast Error
2- MEASURING ERRORS - STANDARD DEVIATION/MAD
- NORMAL DISTRIBUTION
- Characteristics of the Normal Distribution (ND)
- Describing All Normal Distributions
- Prediction Intervals
- MAD - Measure of Scatter
- An Example Using Sales of Product A
- Frequency Distribution Solution
3- FITTING VERSUS FORECASTING
- Absolute Error Measures
- Relative Measures of Error
- Cautions in Using Percentages
- Other Error Measures
- STATISTICAL SIGNIFICANCE TEST FOR BIAS
- CORRELATION AND COVARIANCES
- Correlation - Big City Bookstore
- Statistical Significance
- Cause and Effect
4- AUTOCORRELATIONS AND ACF(k)
- ACFs of Random Series, Random Walk Series,
Trending Series, Seasonal Series - Which Measure of Correlation?
- ACFs of Births and Marriages
- SUPPLEMENT 2-A E(VALUES), WN, AND CORR.
- SUPPLEMENT 2-B Q-STATISTIC
5Chapter 2
- THE IMPORTANCE OF PATTERN
- Actual Value Pattern Error
- DESCRIPTIVE STATISTICS
- Statistical analysis models the past to predict
the future - FIGURE 2-1.
- Demand for Product A (Boxes of Computer Paper) A
series with Random Sales - The past may be a representative sample of past
and future values.
6- Descriptive and Graphical Tools
- Raw data ? Information (i.e. Pattern) ?
Forecasts ? Decisions - Series A Distribution
- Demands from 675 to 1,024 100.00
- Demands from 825 and 874 29.20
- Demands above 974 2.08
- Demands above 1,024 0.00
- Demand from 775 to 924 79.20
7- TABLE 2-1. Frequency/Probability Distribution of
Demands for Product A Probabilities - Past percentage frequencies
- P(Rain) 600/1,000 .6 60
- Subjective judgment
- Theoretical structure (e.g., Construction of a
Die)
8Probability Distributions in Forecasting
- Assumption 1 The past repeats.
- Assumption 2 The sample is accurate.
- FIGURE 2-2.
- Probability Distribution of Demands for Product A
9UNIVARIATE SUMMARY STATISTICS
- Predicting Using Mean, Median, or Mode
- Time t 1 2 3 4 5 6 7
- Values Xt 11 4 5 12 9 2 6
- Mean
- SXt 114512926 49
- t 7 (2-1)
- n 7 7
- where SXt is the sum from t 1 to t 7
10- Deviations are
- Xt - xt xt
- (11 - 7) 4
- ( 4 - 7) -3
- ( 5 - 7) -2
- (12 - 7) 5
- ( 9 - 7) 2
- ( 2 - 7) -5
- ( 6 - 7) -1
- Â
- Sxt 4 - 3 - 2 5 2 - 5 - 1 0
11- Median is the middle value
- 2 4 5 6 9 11 12
- Mode is most frequent
- 1 2 5 6 6 7 10 11
- Comparisons of Measures
- Symmetrical Distributions
- Mean, Median, and Mode are all equal
- Properties of Central Values
- Mean - greatly affected by extremes.
- Outliers greatly affect it.
- Median less affected by extremes.
- Mode not affected by extremes.
12- Forecast period 9.
- Â
- t 1 2 3 4 5 6
7 8 - Xt 100 70 90 110 1,200 110 130 80
- Â
- Ranking, the sales are
- 70 80 90 100 110 110 130 1,200
- Â
13Which is best to forecast Period 9?
- 10070901101,20011013080
- Mean
- 8
- 236.25
- Median (100 110)/2 105
- Mode 110
- Â
- 1,200 Greatly Influences the Mean. If 1,200 is a
typical value, then use the mean of 236.25.
14- If 1,200 is abnormal, then Median. Better Yet,
Correct the 1,200 Value. Â - 100709011013011013080
- Mean
- 8
- 102.5
- Median (100 110)/2 105
- Mode 110
- Outliers should normally be replaced. But Retain
the Value of the Outlier for Planning Purposes. Â
15Outlier Adjustments Are Essential
-
- Normality is achieved through elimination of the
abnormal.
16Mean Forecast Error
- Good Models ME 0, MSE 0
- Over and under forecasting the same.
- Nonzero mean errors yield large cumulative
errors.
17Dispersion - Standard Dev. and MAD
- FIGURE 2-3
- Four Distributions with the Same Mean but
Different Scatter - Standard deviation Mean Squared Error
- S standard deviation from sample
- s standard deviation from census
18- s is estimated using the Xbart and S of large
samples (i.e., sample sizes greater than 30)
provide accurate estimates of s. - S(Xt m)2
- s (2-3)
- N
- where m population mean
- N population size.
- S sum over all obs (i.e., a census)
19- The best estimate of s is S
- S(Xt x)2
- S (2-4)
- n - 1
- where x sample mean
- n-1 better estimates s.
20- An Example
- t 1 2 3 4 5 6 7
- Xt 11 4 5 12 9 2 6
- x 7
- (11-7)2(4-7)2(5-7)2(12-7)2(9-7)2(2-7)2(6
-7)2 - S2 7 - 1
- S 3.742, used to estimate s.
- The meaning of S is clearer with ND
21NORMAL DISTRIBUTION
- FIGURE 2-4. Normal Distribution Area
- Characteristics of the Normal Distribution (ND)
- Is symmetrical, bell-shaped.
- Describes Events with relatively large number of
minor, independent,chance (random) influences. - The errors or deviations of large samples are ND
large gt 30. - Is defined totally by m and s.
22- TABLE 2-2.
- Some Standard Confidence Intervals for the
Normal Distribution - Describing All Normal Distributions
- The m /-s contains 68 of the ND
- The m /- 1.96s contains 95 of the ND.
- The m /- 2.58s contains 99 of the ND.
23- Forecast error Actual - Forecast
- Actual Forecast Error
- e.g., forecast 1000 and S of 40
- Actuals Forecast Mean Error /- ZS
- The m /-s contains 68 of the ND
- Actuals 1,000 /- 40 960 to 1,040.
- The m /- 1.96s contains 95 of the ND.
- Actual 1,000 /- 80 920 to 1,080.
- The m /- 2.58s contains 99 of the ND.
- Other common intervals are in Table 2-2.
24Prediction Intervals
- Based on assumption the past will repeat.
- P(ActualgtForecast3S a good process) .0027/2
.00135 - P(ActualltForecast-3S a good process) .0027/2
.00135 - where P is the probability
- means given
25- If Actual - Forecast gt 3S
- Then infer the process is out of control.
- Only 27/10,000 times will this occur when in
control.
26MAD Another Measure of Scatter
- S Xt x
- MAD (2-5)
- n
- Using data from the S calculation,
- 11 4 5 12 9 2 6 with x 7
- 11-74-75-712-79-72-7
6-7 - MAD
- 7
- 3.143
27- For the ND
- MAD .80S or S 1.25MAD (2-6)
- In terms of S the following results
- Mean /- 3.00S Mean and - 3.00(40)
- Mean and - 120
- In terms of MAD
- Mean /- 3.75MAD Mean and -3.75(32)
- Mean and - 120
28An Example Using Sales of Product A
- The series varies randomly about a constant mean
of 850 without any systematic pattern, an
effective forecast is the mean of 850. - Forecast 850
- Error Actual - Forecast Actual - 850
- Table 2-3 Frequency Distribution of Forecast
Errors for Product A
29FIT VERSUS FORECAST ? FIT THEN FORECAST
- Fit - use past to fit model
- Forecast - Forecast unknown future values
- WWFATAL.DAT from 1970 to 1989
- Fit 1970 to 1979 then
- Forecast 1980 to 1989. Assume Deaths are Random
About Mean - YtYt et 830.2 et
- Where Yt mean of 1970 to 1979 830.2
30- Table 2-4 Worldwide Airline Deaths - Actual and
Fitted Values -
- DATE DEATHS FITTED ERROR ERROR
ERROR2 - 1970 700 830.2 -130.2
130.2 16952.04 - 1971 884 830.2 53.8
53.8 2894.44 - 1972 1209 830.2 378.8
378.8 143489.44 - 1973 862 830.2 31.8
31.8 1011.24 - 1974 1299 830.2 468.8
468.8 219773.44 - 1975 467 830.2 -363.2
363.2 131914.24 - 1976 734 830.2 -96.2
96.2 9254.44 - 1977 516 830.2 -314.2
314.2 98721.64 - 1978 754 830.2 -76.2
76.2 5806.44 - 1979 877 830.2 46.8
46.8 2190.24 -
- TOTAL 8302 8302 0.0
1960 632007 - MEAN 830.2 830.2 0.0
196.0 63200.7 -
31- Absolute Error Measures, et Yt - Yt
- n
- ME Set/n 0/10 0 (2-7)
- t1
- n
- MAD Set/n 1960/10 196 (2-8)
- t1
- n
- SSE Se2t 632,007 (2-9)
- t1
- n
- MSE Se2t/n 63,200.7 (2-10)
- t1
32- RESIDUAL STANDARD ERROR
- RSE Se2t/(n-1)
- 632,007/(10-1) 265 (2-11)
33- Table 2-5 Worldwide Airline Deaths - Actual and
Forecasted Values -
- DATE DEATHS FORECAST ERROR ERROR
ERROR2 - 1980 817 830.2
-13.2 13.2 174.24 - 1981 362 830.2
-468.2 468.2 219211.24 - 1982 764 830.2
-66.2 66.2 4382.44 - 1983 809 830.2
-21.2 21.2 449.44 - 1984 223 830.2
-607.2 607.2 368691.84 - 1985 1066 830.2
235.8 235.8 55601.64 - 1986 546 830.2
-284.2 284.2 80769.64 - 1987 901 830.2
70.8 70.8 5012.64 - 1988 729 830.2
-101.2 101.2 10241.44 - 1989 825 830.2
-5.2 5.2 27.04 -
34- The forecast error measures are
- n
- ME Set/n -1260/10 -126 (2-7a)
- t1
- n
- MAD Set/n1873.2/10187.32 (2-8a)
- t1
- n
- SSE Se2t 744,561.6 (2-9a)
- t1
- n
- MSE Se2t/n 74,456.16 (2-10b)
- t1
35- RSE Se2t/(n-1)
- 744561.6/9 287.6 (2-11b)
36Relative Measures of Error
- S (Yt - Yt)
- PEt (100) (2-12)
- Yt
- n
- MPE SPEt/n (2-13)
- t1
- n
- MAPE SPet/n (2-14)
- t1
37- TABLE 2-6 RELATIVE MEASURES OF FIT AND FORECAST
ERRORS -
- DATE DEATHS FIT ERROR PE
APE -
- 1970 700 830.2 -130.2
-18.60 18.60 - 1971 884 830.2
53.8 6.09 6.09 - 1972 1209 830.2 378.8
31.33 31.33 - 1973 862 830.2
31.8 3.69 3.69 - 1974 1299 830.2 468.8
36.09 36.09 - 1975 467 830.2 -363.2
-77.77 77.77 - 1976 734 830.2
-96.2 -13.11 13.11 - 1977 516 830.2 -314.2
-60.89 60.89 - 1978 754 830.2
-76.2 -10.11 10.11 - 1979 877 830.2
46.8 5.34 5.34 -
- MEAN 830.2 830.2 0.0
-9.80 26.30
38-
- DATE DEATHS FORECAST ERROR PE
APE -
- 1980 817 830.2
-13.2 - 1.62 1.62 - 1981 362 830.2
-468.2 -129.34 29.34 - 1982 764 830.2
-66.2 -8.66 8.66 - 1983 809 830.2
-21.2 -2.63 2.62 - 1984 223 830.2
-607.2 -272.29 272.29 - 1985 1066 830.2
235.8 22.12 22.12 - 1986 546 830.2
-284.2 -52.05 52.05 - 1987 901 830.2
70.8 7.86 7.86 - 1988 729 830.2
-101.2 -13.88 13.88 - 1989 825 830.2
-5.2 -.63 .63 -
- MEAN 704.2 830.2
-126.0 -45.11 51.11
39- Cautions in Using Percentages
- PE ? Infinity with small denominators in eq.
2-12, when the actual is very low. - OCCAM'S RAZOR and PARSIMONY
- All other things equal, the simplest theory or
model is the best.
40Statistical Significance Test for Bias or
Non-zero Mean Error
- et - 0
- t-calc.
- Se/ n
- ( et - et)2
- Se this is the Std Dev.
- n-1
- If t-calc lt t-table, not statistically
significant Bias - If t-calc gt t-table, statistically significant
Bias
41- CORRELATION MEASURES
- Table 2-7. Big City Bookstore Demand,
Advertising, and Competition. (BIGCITY.DAT) -
- Year Demand (Y) Advertising (X1)
Competition (X2) - 1984 27 20
10 - 1985 23 20
15 - 1986 31 25
15 - 1987 45 28
15 - 1988 47 29
20 - 1989 42 28
25 - 1990 39 31
35 - 1991 45 34
35 - 1992 57 35
20 - 1993 59 36
30 - 1994 73 41
20 - 1995 84 45
20 -
- Demand for Books Sales in 1000.
- Advertising Expenditures in 1000.
42CORRELATIONS AND COVARIANCES
- Association can be measured by the degree that
variables covary (e.g. high values of Y with high
values of X and low values of Y with low values
of X). Covariance - S (Xt- X)(Yt-Y)
- COV(X,Y) (2-16)
- n - 1
-
-
43- Y Y X
- 3 1 2
- 2 4
- 2 3 6
-
- 1
- 1 2 3 4 5 6 X
- Y 2 X 4
44- Figure 2-7. Example 1 Data
- Covariance Example 1
- X Y X-X Y-Y (X-X)(Y-Y)
- 6 3 2 1 2
4 - 4 2 0 0 0 COV
2 - 2 1 -2 -1 2
3-1 -
- 4
45- 4 Y X
- 4 2
- 3 1 4
- 4 6
- 2
-
- 1
- 1 2 3 4 5 6 X
- Y 3 X 4
46- Figure 2-8. Example 2 Data
- Covariance Example 2
- X Y X-X Y-Y (X-X)(Y-Y)
- 6 4 2 1 1
0 - 4 1 0 -2 0 COV
0 - 2 4 -2 1 -1
3-1 -
- 0
-
47Correlation A Relative Measure of Association
- Pearson Correlation Coefficient
- If r -1, then there is a perfect negative
relationship. - If r 0, then there is no relationship.
- If r 1, then there is a perfect positive
relationship.
48- Pearson Correlation
- COV(X,Y)
- rxy (2-17)
- SxSy
- where S(X - X)2 S(Y - Y)2
- Sx Sy
- n-1 n-1
49- The correlation coefficient for Example 1 with
perfectly related variables - 2202(-22) 404
- Sx 4 2
- 3-1 2
- 120212
- Sy 1
- 3-1
- COV(X,Y) 2
- r(xy) 1
- SxSy 21
- X and Y have a perfect correlation of 1.
50- rxy of 1 means that 1Std Dev D in X is associated
with a 1Std Dev D in Y and vice versa. - Example 2, independent variables
- COV(X,Y) 0
- rxy 0
- SxSy SxSy
51- Correlation Coefficient
- Table 2-8. Big City Bookstore Sums of Squares.
-
- DEMAND ADVERTISING
- YEAR Y X (Y-Y) (X-X)
(Y-Y)2 (X-X)2 (Y-Y)(X-X) - 1984 27 20 -20.67 -11.00
427.11 121.00 227.33 - 1985 23 20 -24.67 -11.00
608.44 121.00 271.33 - 1986 31 25 -16.67 -6.00
277.78 36.00 100.00 - 1987 45 28 -2.67 -3.00
7.11 9.00 8.00 - 1988 47 29 -.67 -2.00
.44 4.00 1.33 - 1989 42 28 -5.67 -3.00
32.11 9.00 17.00 - 1990 39 31 -8.67 .00
75.11 .00 .00 - 1991 45 34 2.67 3.00
7.11 9.00 -8.00 - 1992 57 35 9.33 4.00
87.11 16.00 37.33 - 1993 59 36 11.33 5.00
128.44 25.00 56.67 - 1994 73 41 25.33 10.00
641.78 100.00 253.33 - 1995 84 45 36.33 14.00
1320.11 196.00 508.67 - SUM
3612.67 646.00 1473.00 - MEAN 47.67 31
52- From Table 2-8 we have
- S (Y - Y)2 3612.67
- Sy 18.1225
- n - 1 12 - 1
-
- S (X - X)2 646.00
- Sx 7.663
- n - 1 12 - 1
- S (Y-Y)(X-X) 1473
- COV(X,Y) 133.91
- n-1 12-1
53- COV(X,Y) 133.91
- rxy .9644
- SxSy 18.127.663
- FIGURE 2-9. SEVERAL CORRELATIONS COEFFICIENTS.
54Statistical Sign. of the Cor. Coef.
- Bivariate relationship is ND with a standard
deviation called a standard error equal to - Ser (1 - r2)/(n - 2)
-
- where r equals rxy and n-2 makes Ser a better
estimate of the population Fer. - tr (r - 0)/ (1-r2)/(n-2) (2-18)
55- The statistical hypotheses are
- H0 r 0 The variables are not related.
- H1 r ? 0 The variables are related.
- If tr lt t from the table with n-2 degrees of
freedom, then infer no relationship between Y and
X and accept H0 and H1. - If tr gt t from the table with n-2 degrees of
freedom, then infer statistical significance and
reject H0 and accept H1.
56- TABLE 2-9
- t and Z for .05 and .01 Probabilities
-
- df t-value Z-value
- n-k .05 .01 .05
.01 -
- 1 12.706 63.657 n.a. n.a.
- 2 4.303 9.925 n.a.
n.a. - 3 3.182 5.841 n.a.
n.a. - 4 2.776 4.604 n.a.
n.a. - 5 2.571 4.032 n.a.
n.a. - 6 2.447 3.707 n.a.
n.a. - 7 2.363 3.499 n.a.
n.a. - 8 2.306 3.355 n.a.
n.a. - 10 2.228 3.169 n.a.
n.a. - 15 2.131 2.947 n.a.
n.a. - 20 2.086 2.845 n.a. n.a.
57- TABLE 2-9
- t and Z for .05 and .01 Probabilities
-
- df t-value
Z-value - n-k .05 .01 .05
.01 -
- 30 2.042 2.750 n.a.
n.a. - 40 2.02 2.70 1.96
2.58 - 50 2.01 2.68 1.96
2.58 - 100 1.98 2.63 1.96
2.58 - 500 1.96 2.58 1.96
2.58 -
- df effective no. of observations)
- k 2 for correlation coefficient significance
tests., - n.a. not applicable, use the t value.
58- When a sample size of 10 is used, 95 of the
calculated r's will be within 2.23 times Ser.
Assuming that r .9644, the Ser is - 1-r2 1-.96442
- Ser .08367
- n-2 12-2
- r - 0 .9644 - 0
- tr 11.536
- Ser .08367
59- t -2.228 t 2.228
t 11.536 - -2.228.084 2.228.084
- -.187 .187
- when true r 0,
- then, 95 of
- sample rlt.0156
-
- rxy
- -.187 0
.187 .9644 - Figure 2-10. Normally Distributed rxy when
population rxy 0, n-2 10. Since 11.536 is
greater than the critical value of 2.228 and 3.17
from Table 2-7 for n-k of 10, then conclude that
advertising and demand are significantly
correlated.
60- Cause and Effect X causes Y
- X and Y are correlated.
- Changes in X precede changes in Y
- There are no other possible explanations for
changes in Y. - All other influences have been eliminated as
causes of Y. -
- Correlation Coefficients Measure Linear
Association - X' 13 - 6X .75X2
61AUTOCORRELATIONS AND ACF(k)
- Detecting Univariate Patterns Using Correlations.
- A way to detect association is to graph Yt and
Yt-7. - However, this may not be an objective way of
detection.
62- Table 2-10. Lagged Values of Yt
-
- t Yt Yt-1 Yt-2 Yt-3
-
- 1 3
- 2 6 3
- 3 8 6 3
- 4 4 8 6 3
- 5 4 4 8 6
- 6 8 4 4 8
-
- Yt6 Yt-15 both for observations 1 to 6
63- Pearson Autocorrelation
- COV(Yt,Yt-k)
- rYtYt-k (2-19)
- SYtSYt-k
64- Table 2-11. Calculation of Pearson
Autocorrelation - rYtYt-1 -
- PRODUCT
- t ytYt-Yt yt-1Yt-1-Yt-1 ytyt-1 (Yt-Yt)2
(Yt-1-Yt-1)2 -
- 1 n.a.
- 2 0 -2 0 0
4 - 3 2 1 2 4
1 - 4 -2 3 -6 4
9 - 5 -2 -1 2 4
1 - 6 2 -1 -2 4
1 -
- SUM 0 0 -4 16
16 -
-
65- Using the results of Table 2-9
- 16 16
- SYt 2 Syt-1 2
- 5-1 5-1
- -4
- COV(Yt,Yt-1) -1
- 5-1
- -1 -1
- rYtYt-1 -.2500
- 22 4
66- AutoCorrelation Function (ACF)
- n-k
- S (Yt-y)(Yt-k-y)
- t1k
- ACF(k) (2-20)
- n
- S (Yt-y)2
- t1
-
- ACF uses an overall mean without adjusting the
denominator, as shown Table 2-12 it's less
accurate as k increases. - Note that Pearson and ACFs are symmetrical about
lag of 0 (i.e. YtYt).
67- Table 2-12. Pearson Correlations VS. ACFs
-
- YtYt-2 YtYt-1 YtYt YtYt1 YtYt2
-
- PEARSON -.9113 -.250 1.00 -.250 -.9113
- ACF -.6170 -.223 1.00 -.223
-.6170 -
68- Approximate Standard Error of ACFs
-
- SeACF 1/ n (2-21)
-
- where SeACF standard error of ACF
- n no. of obs. in series
- ACF t-test
- ACF(k)
- t (2-22)
- SeACF
-
69- Consider a simple example of SeACF for n100,
ACF(1) .5 -
- SeACF 1/100.5 1/.1 .10
-
- t .5/.1 5 t-calculated
-
- This t value gtgtgt 2, Infer ACF gt 0
- Infer there is a statistically significant
autocorrelation between Yt and Yt-1.
70- Consider ACFs for SERIESB.DAT, stock prices in
Table 2-13. - The ACFs are very high starting at .9274 at lag 1
to .0873 through lag 12. - An approximate SeACF is
- 1 1
- SeACF .1443
- 48.5 6.9282
71- and the appropriate t-test is
- ACF(1) .9274
- t 6.425
- SeACF .1443
- The first 6 ACFs are statistically significant.
- Remember that the SeACF is only an approximation,
valid for n/4 where n is at least 50.
72- Table 2-13. ACFs of Series B
-
- BtBt-1 BtBt-2 BtBt-3 BtBt-4 BtBt-5
BtBt-6 - .9274 .8250 .6932 .5636 .4485 .3415
- BtBt-7 BtBt-8 BtBt-9 BtBt-10 BtBt-11
BtBt-12 - .2503 .1740 .1154 .0870 .0855 .0873
73Pattern Recognition with ACFs
- ACFs of Random Series and White Noise
- Table 2-15 ACFs of Series A
-
- AtAt-1 AtAt-2 AtAt-3 AtAt-4 AtAt-5 AtAt-6
- .1784 .2296 .0738 .1237 .0193 .1718
- AtAt-7 AtAt-8 AtAt-9 AtAt-10 AtAt-11 AtAt-12
- .0809 -.0055 .0241 .1467 .1711 .1892
-
- Figure 2-11. ACFs for Series A. Here
74- ACFs of Random Walk Series
- Figure 2-12. ACFs of Series B. Here
75- ACFs of Trending Series
- Table 2-16. ACFs of Series C
-
- CtCt-1 CtCt-2 CtCt-3 CtCt-4 CtCt-5
CtCt-6 - .8558 .8199 .7611 .6948 .6417 .5705
- CtCt-7 CtCt-8 CtCt-9 CtCt-10 CtCt-11
CtCt-12 - .5481 .4691 .4197 .3614 .3156
.2704 -
- Figure 2-13. ACFs Series C. Here
76- Trends Versus Random Walks
- The ACFs of random walks and trends behave
similarly. Thus, determining which involves
tests on the series.
77- ACFs of Seasonal Series
- SERIESD.DAT is demand for diet soft drinks in
Figure 1-7. - Table 2-17Autocorrelations of Series D.
-
- DtDt-1 DtDt-2 DtDt-3 DtDt-4 DtDt-5
DtDt-6 - .7916 .4837 .0857 -.2920 -.5732
-.6690 - DtDt-7 DtDt-8 DtDt-9 DtDt-10 DtDt-11
DtDt-12 - -.5895 -.3541 -.0733 .2111 .4449
.5107 - DtDt-13 DtDt-14 DtDt-15 DtDt-16 DtDt-17
DtDt-18 - .4707 .2855 .0261 -.2200 -.4122
-.5082 - DtDt-19 DtDt-20 DtDt-21 DtDt-22 DtDt-23
DtDt-24 - -.4427 -.2942 -.0819 .1456 .3043
.3794 -
- Figure 2-14 ACFs of Series D. HERE
78Which Measure of Correlation?
- May have to use many lags and therefore violate
n/4 rule. - ACFs are approximations, Pearson is not sensitive
to the lag. - Thus, use Pearson when insufficient n.
79AUTOCORRELATION APPLICATIONS
- Autocorrelations of Births and Marriages
- Figure 2-15. Quarterly Births in U.S. Here
- Table 2-12. ACFs of Marriages. Quarterly Data
From 198501 To 199204 n32. -
- Lag k 1 2 3 4
- ACF -.125 -.711 -.109 .875
- 5 6 7 8
- -.103 -.613 -.107 .743
80- 2SeACFS .36, (i.e. 21/(32).5).
- Consider the Following Model
- Xt Xt-4 for t 5 to 32 (2-23)
- et Xt - Xt-4 for t 5 to 32 (2-24)
- Figure 2-16. ACFs of Marriage in the U.S. Here
- Figure 2-17. Mars(t) and Mars(t-4) Here
- Figure 2-18. Errors Mars(t) - Mars(t-4). Here
- Figure 2-19. ACFs Mars(t)-Mars(t-4). Here
81- Table 2-13. ACFs of Errors Marriages(t) -
Marriages(t-4). - Qtrly Data From 198601 To 199204
-
- Lag 1 2 3 4
- ACF .0027 .2458 .1350 -.2034
- 5 6 7 8
- -.0759 -.1055 -.2506 -.1890