Title: Shall we take Solow seriously??
1Shall we take Solow seriously??
- Empirics of growth
- Ania Nicinska
- Agnieszka Postepska
- Pawel Zaboklicki
2Original augmented models
- Solow
- Assuming neoclassical production function steady
state level of capital per capita is determined
by saving and population growth rates
- Mankiw, Romer Weil
- Yes predicted directions of influence are
consistent with the data - butwe need to add accumulation of human capital
to get the right magnitudes
3Why?
- For any given rate of human capital accumulation
higher saving or lower population growth leads to
a higher level of income and thus a higher level
of human capital. - Omitting human capital accumulation causes bias
if correlated with saving and population growth
rates.
4We will prove that
- Including a proxy for human capital as an
additional explanatory variable in the regression
equation leads to magnitudes predicted by Solow. - The augmented model accounts for about 80 of the
cross country variation in income!!!!
5- Soafter all Solow was right he just forgot
about some details happens!!!!
6What about convergence??
7- We will prove that once accounting for the
saving and population growth rate we observe
convergence at roughly the rate that Solow
predicted.
8Data
- We used data from Barro and Lee data set. It
contains different country set to the one used by
authors so our results vary in magnitudes.
However, the spirit remains unchanged!
9Data cont.
- We have data from years 1960-1985 for 121
countries divided into three groups - 1 non-oil countries
- 2 intermediate countries
- 3 OECD countries
- The dataset includes real income, investments,
population growth and proxy for human capital
accumulation.
10Basic model
- First, we will look at the results obtained from
the basic model equation estimation, which takes
the following form
11- We want to investigate whether real income is
higher in countries with higher saving rate and
lower in countries with higher values of ngd.
12- We assume that gd 0.05 is constant across
countries, where g reflects the advancement of
knowledge, which is not country specific. -
13Results (OLS)
- gen lnyln(gdp)
- gen lnsln(inv)
- gen lnngdln(gpop 0.05)
- reg lny lns lnngd if group11
- Source SS df MS
Number of obs 566 - -------------------------------------------
F( 2, 563) 333.72 - Model 324.412641 2 162.20632
Prob gt F 0.0000 - Residual 273.650411 563 .486057568
R-squared 0.5424 - -------------------------------------------
Adj R-squared 0.5408 - Total 598.063052 565 1.05851868
Root MSE .69718 - --------------------------------------------------
---------------------------- - lny Coef. Std. Err. t
Pgtt 95 Conf. Interval - -------------------------------------------------
---------------------------- - lns .7575753 .0404936 18.71
0.000 .6780384 .8371122 - lnngd -2.186215 .1768619 -12.36
0.000 -2.533605 -1.838825 - _cons 3.342269 .4937159 6.77
0.000 2.372519 4.312019
14Results (panel)
- tis czas
- iis kraj
-
- xtreg lny lns lnngd if group11
- Random-effects GLS regression
Number of obs 566 - Group variable (i) kraj
Number of groups 97 - R-sq within 0.0849
Obs per group min 2 - between 0.6024
avg 5.8 - overall 0.5421
max 6 - Random effects u_i Gaussian
Wald chi2(2) 111.65 - corr(u_i, X) 0 (assumed)
Prob gt chi2 0.0000 - --------------------------------------------------
---------------------------- - lny Coef. Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - lns .3205264 .0401647 7.98
0.000 .2418049 .3992478
15Human capital
the fraction of the eligible population (aged
12-17) enrolled in secondary school multiplied
by the fraction of population at working-age
that is of school age (15-17) for country j and
time period i.
assumed to be constant over time and equal to
0.05 for all countries
16(No Transcript)
17Introducing human capital
xtreg lny lns lnngd lnSCHOOL if
group11 4.17918 5.703551 ------------------
--------------------------------------------------
--------- sigma_u .48950053 sigma_e
.23470675 rho .81307219
(fraction of variance due Random-effects GLS
regression Number of obs
497 Group variable (i) kraj
Number of groups 86 R-sq
within 0.3090 Obs per
group min 1 between 0.7432
avg
5.8 overall 0.7029
max 6 Random effects
u_i Gaussian Wald chi2(3)
363.77 corr(u_i, X) 0 (assumed)
Prob gt chi2
0.0000 ------------------------------------------
------------------------------------ lny
Coef. Std. Err. z Pgtz 95
Conf. Interval ---------------------------------
--------------------------------------------
lns .3002022 .0389558 7.71 0.000
.2238503 .3765542 lnngd -1.038666
.1443974 -7.19 0.000 -1.32168
-.7556523 lnSCHOOL .2845598 .021147
13.46 0.000 .2431125 .3260071
_cons 4.941366 .3888772 12.71 0.000 to
u_i) ---------------------------------------------
--------------------------------- .
18Hausman test
Hausman specification test ----
Coefficients ---- Fixed
Random lny Effects Effects
Difference ------------------------------------
------------------ lns .2198654
.3002022 -.0803368 lnngd
-.8024757 -1.038666 .2361903
lnSCHOOL .2400482 .2845598
-.0445116 Test Ho difference in
coefficients not systematic
chi2( 3) (b-B)'S(-1)(b-B), S (S_fe -
S_re) 165.07
Probgtchi2 0.0000
We reject Ho hypothesis and run fixed effect
regression
19Fixed effect regression
xtreg lny lns lnngd lnSCHOOL if group11,
fe Fixed-effects (within) regression
Number of obs 497 Group variable
(i) kraj Number of groups
86 R-sq within 0.3099
Obs per group min 1
between 0.7441
avg 5.8 overall 0.7026
max
6
F(3,408) 61.07 corr(u_i, Xb)
0.5936 Prob gt F
0.0000 -------------------------------------
-----------------------------------------
lny Coef. Std. Err. t Pgtt
95 Conf. Interval ----------------------------
-------------------------------------------------
lns .2198654 .0420508 5.23
0.000 .1372021 .3025288 lnngd
-.8024757 .1530299 -5.24 0.000
-1.103301 -.5016503 lnSCHOOL .2400482
.0222506 10.79 0.000 .1963082
.2837883 _cons 5.511256 .4062469
13.57 0.000 4.712658 6.309854 -----------
-------------------------------------------------
----------------- sigma_u .6270438
sigma_e .23470675 rho .87711176
(fraction of variance due to u_i) ----------------
--------------------------------------------------
------------ F test that all u_i0 F(85,
408) 27.03 Prob gt F 0.0000
20 gen rhs1 lnngd-lns gen rhs2 lnSCHOOL-lns
21Restricted fixed effect regression
xtreg lny rhs1 rhs2 if group11,
fe Fixed-effects (within) regression
Number of obs 497 Group variable
(i) kraj Number of groups
86 R-sq within 0.3023
Obs per group min 1
between 0.7273
avg 5.8 overall 0.6850
max
6
F(2,409) 88.61 corr(u_i, Xb)
0.5756 Prob gt F
0.0000 -------------------------------------
-----------------------------------------
lny Coef. Std. Err. t Pgtt
95 Conf. Interval ----------------------------
-------------------------------------------------
rhs1 -.4935334 .0456002 -10.82
0.000 -.5831734 -.4038934 rhs2
.2524585 .021553 11.71 0.000 .2100899
.294827 _cons 6.339631 .1076709
58.88 0.000 6.127974
6.551289 ----------------------------------------
-------------------------------------
sigma_u .63733151 sigma_e .23570005
rho .87968598 (fraction of variance
due to u_i) --------------------------------------
---------------------------------------- F test
that all u_i0 F(85, 409) 28.91
Prob gt F 0.0000
22Convergence
. reg lny lnY60 if group11
Source SS df MS
Number of obs 546 -------------------
------------------------ F( 1, 544)
522.06 Model 294.766441 1
294.766441 Prob gt F 0.0000
Residual 307.152329 544 .564618253
R-squared 0.4897
-------------------------------------------
Adj R-squared 0.4888 Total
601.918771 545 1.10443811 Root MSE
.75141 -----------------------
--------------------------------------------------
----- lny Coef. Std. Err.
t Pgtt 95 Conf. Interval
-------------------------------------------------
---------------------------- lnY60
.0003215 .0000141 22.85 0.000
.0002938 .0003491 _cons
6.902612 .0449259 153.64 0.000 6.814363
6.990862 --------------------------------
----------------------------------------------
23Controlling for saving and population growth
- . xtreg lny lnY60 lns lnngd if group11
-
- Random-effects GLS regression
Number of obs 540 - Group variable (i) kraj
Number of groups 91 -
- R-sq within 0.0562
Obs per group min 5 - between 0.6457
avg 5.9 - overall 0.6097
max 6 -
- Random effects u_i Gaussian
Wald chi2(3) 206.77 - corr(u_i, X) 0 (assumed)
Prob gt chi2 0.0000 -
- --------------------------------------------
---------------------------------- - lny Coef. Std. Err.
z Pgtz 95 Conf. Interval - -------------------------------------------
---------------------------------- - lnY60 .0002534 .0000278
9.10 0.000 .0001988 .0003079 - lns .2594275 .0403126
6.44 0.000 .1804161 .3384388 - lnngd -.7506613 .1733739
-4.33 0.000 -1.090468 -.4108547 - _cons 5.574069 .4559533
12.23 0.000 4.680417 6.467721
24Hausman test
- . xthausman
-
-
- Hausman specification test
-
- ---- Coefficients ----
- Fixed Random
- lny Effects Effects
Difference - -------------------------------------------
----------- - lns .1734279 .2594275
-.0859996 - lnngd -.6418418 -.7506613
.1088195 -
- Test Ho difference in coefficients
not systematic -
- chi2( 2)
(b-B)'S(-1)(b-B), S (S_fe - S_re) - 31.07
- Probgtchi2 0.0000
25Controlling for saving and population growth
- . xtreg lny lnY60 lns lnngd if group11, fe
-
- Fixed-effects (within) regression
Number of obs 540 - Group variable (i) kraj
Number of groups 91 -
- R-sq within 0.0571
Obs per group min 5 - between 0.6378
avg 5.9 - overall 0.5657
max 6 -
-
F(2,447) 13.54 - corr(u_i, Xb) 0.6823
Prob gt F 0.0000 -
- --------------------------------------------
---------------------------------- - lny Coef. Std. Err.
t Pgtt 95 Conf. Interval - -------------------------------------------
---------------------------------- - lnY60 (dropped)
- lns .1734279 .0432074
4.01 0.000 .088513 .2583427 - lnngd -.6418418 .1774066
-3.62 0.000 -.9904963 -.2931873 - _cons 6.26194 .471011
13.29 0.000 5.336269 7.18761
26Controlling for saving and population growth
- . reg lny lnY60 lns lnngd if group11
-
- Source SS df MS
Number of obs 540 - -------------------------------------------
F( 3, 536) 342.36 - Model 387.410632 3
129.136877 Prob gt F 0.0000 - Residual 202.178054 536
.377197862 R-squared 0.6571 - -------------------------------------------
Adj R-squared 0.6552 - Total 589.588686 539
1.09385656 Root MSE .61416 -
- --------------------------------------------
---------------------------------- - lny Coef. Std. Err.
t Pgtt 95 Conf. Interval - -------------------------------------------
---------------------------------- - lnY60 .0001856 .0000155
11.95 0.000 .0001551 .0002161 - lns .6007277 .0406437
14.78 0.000 .5208872 .6805683 - lnngd -1.204025 .2259398
-5.33 0.000 -1.647861 -.7601891 - _cons 5.195703 .5954142
8.73 0.000 4.026072 6.365335 - --------------------------------------------
----------------------------------
27Controlling for human capital
- . reg lny lnY60 lns lnngd lnSCHOOL if group11
-
- Source SS df MS
Number of obs 471 - -------------------------------------------
F( 4, 466) 373.07 - Model 376.353388 4
94.088347 Prob gt F 0.0000 - Residual 117.526225 466
.252202199 R-squared 0.7620 - -------------------------------------------
Adj R-squared 0.7600 - Total 493.879613 470
1.05080769 Root MSE .5022 -
- --------------------------------------------
---------------------------------- - lny Coef. Std. Err.
t Pgtt 95 Conf. Interval - -------------------------------------------
---------------------------------- - lnY60 .0001264 .0000134
9.46 0.000 .0001002 .0001527 - lns .3148332 .0456057
6.90 0.000 .2252149 .4044514 - lnngd -1.093758 .2040205
-5.36 0.000 -1.494672 -.6928435 - lnSCHOOL .3618771 .0245546
14.74 0.000 .3136256 .4101285 - _cons 4.347212 .5360951
8.11 0.000 3.293749 5.400675 - --------------------------------------------
----------------------------------
28Restricted regression
- . reg lny lnY60 rhs1 rhs2 if group11
-
- Source SS df MS
Number of obs 471 - -------------------------------------------
F( 3, 467) 493.21 - Model 375.396246 3
125.132082 Prob gt F 0.0000 - Residual 118.483367 467
.253711707 R-squared 0.7601 - -------------------------------------------
Adj R-squared 0.7586 - Total 493.879613 470
1.05080769 Root MSE .5037 -
- --------------------------------------------
---------------------------------- - lny Coef. Std. Err.
t Pgtt 95 Conf. Interval - -------------------------------------------
---------------------------------- - lnY60 .0001386 .0000118
11.72 0.000 .0001154 .0001619 - rhs1 -.7030645 .0375851
-18.71 0.000 -.7769213 -.6292077 - rhs2 .36919 .0243385
15.17 0.000 .3213636 .4170165 - _cons 5.374257 .0975428
55.10 0.000 5.18258 5.565934 - --------------------------------------------
----------------------------------
29Conclusions
- We proved that augmented Solow model describes
growth well, both in directions of influence and
magnitudes. - We also showed that convergence do happen in
reality once we compare similar countries in
terms of population growth and saving rates. -
30Cook book procedure for a research project
- Begin as soon as possible data sets are like a
box of chocolates you never know what youre
gonna get - Be patient read me files can be tricky
- Attend STATA classes and learn programming or
become a copy/paste master - Make friends there is a huge difference between
knowing how to do something doing it.
31- So so it is just like Solow said it should
be - GOOD LUCK!!!!!!