Fingerprint Analysis - PowerPoint PPT Presentation

About This Presentation
Title:

Fingerprint Analysis

Description:

... rolled ink impression paper scan. Plus: big area. Minuses: ... A model-based method for the computation of fingerprints' orientation field. IEEE TIP 2004. ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 23
Provided by: pavelm
Category:

less

Transcript and Presenter's Notes

Title: Fingerprint Analysis


1
  • Fingerprint Analysis
  • (part 1)
  • Pavel Mrázek

2
What is fingerprint
  • Ridges, valleys
  • Singular points
  • Core
  • Delta
  • Orientation field
  • Ridge frequency

3
Fingerprint classes

4
Small scale Minutia
  • 150 types in theory
  • 7 used by human experts
  • 2 types for the machine
  • Ending
  • Bifurcation

5
Minutia examples

6
Sensing
  • Traditional (off line) rolled ink impression
    paper scan
  • Plus big area
  • Minuses
  • Inconvenient
  • Distortion
  • Too much/little ink

7
Sensing
  • Optical sensors

8
Sensing
  • Optical sensors
  • Good large area possible, good image quality,
    contactless scanning available
  • Bad size

9
Sensing
  • Silicon sensors
  • Capacitive
  • Electric field
  • Thermal

10
Sensing
  • Silicon sensors
  • Good image quality, small form factor
  • Price proportional to size

11
Sensing
  • Silicon sensors
  • Area
  • Swipe

12
Fingerprint types

13
Minutia detection overview
14
Orientation field
  • Orientation field (or ridge flow) estimation
  • Crucial step before image enhancement
  • Various methods
  • Gradient-based
  • Gabor filters
  • FFT

15
Orientation estimation
  • Gradient direction
  • local characteristics
  • same ridge orientation, opposite gradients
  • more global view needed
  • Classical solution Structure tensor(second
    moment matrix, interest operator)
  • start from a 2x2 matrix(positive semidefinite)
  • safe to average information

16
Orientation estimation
  • Structure tensor
  • Local
  • Larger scale average componentwise(Gaussian
    window, linear/nonlinear smoothing)
  • 2 nonnegative eigenvalues
  • both small backgroung / low contrast
  • one big, one small regular ridge area
  • both big multiple orientations (core, delta,
    scar)

17
Orientation estimation
  • Structure tensor
  • system of 2 orthogonal eigenvectors
  • shows dominant direction

18
Orientation estimation
19
Orientation estimation
20
Orientation estimation
  • Problematic images
  • Solution
  • Enforce smoothness
  • Use prior knowledge

21
Orientation model
22
References
  • Maltoni et al. Handbook of Fingerprint
    Recognition. Springer 2003.
  • Maltoni. A tutorial on fingerprint recognition.
    In LNCS 3161, Springer 2005.
  • Hong, Wan, Jain. Fingerprint image enhancement
    algorithm and performance evaluation. IEEE PAMI
    1998.
  • Zhou, Gu. A model-based method for the
    computation of fingerprints orientation field.
    IEEE TIP 2004.
  • Weickert. Coherence enhancing shock filters. DAGM
    2003.
  • Contact mrazekp -at- cmp.felk.cvut.cz
Write a Comment
User Comments (0)
About PowerShow.com