Machine Translation and MT tools: Giza and Moses - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Machine Translation and MT tools: Giza and Moses

Description:

Many-to-one mappings allowed. Generating Bi-directional Alignments ... iterate until no new points added. for english word e = 0 ... en. for foreign word f = 0 ... – PowerPoint PPT presentation

Number of Views:209
Avg rating:3.0/5.0
Slides: 30
Provided by: vija8
Category:

less

Transcript and Presenter's Notes

Title: Machine Translation and MT tools: Giza and Moses


1
Machine Translation and MT tools Giza and Moses
  • -Nirdesh Chauhan

2
Outline
  • Problem statement in SMT
  • Translation models
  • Using Giza and Moses

3
Introduction to SMT
  • Given a sentence in foreign language F, find most
    appropriate translation in English E
  • P(FE) Translation model
  • P(E) Language model

4
The Generation Process
  • Partition Think of all possible partitions of
    the source language
  • Lexicalization For a give partition, translate
    each phrase into the foreign language
  • Reordering permute the set of all foreign words
    - words possibly moving across phrase boundaries
  • We need the notion of alignment to better explain
    mathematic behind the generation process

5
Alignment

6
Word-based alignment
  • For each word in source language, align words
    from target language that this word possibly
    produces
  • Based on IBM models 1-5
  • Model 1 simplest
  • As we go from models 1 to 5, models get more
    complex but more realistic
  • This is all that Giza does

7
Alignment
  • A function from target position to source
    position

The alignment sequence is 2,3,4,5,6,6,6 Alignment
function A A(1) 2, A(2) 3 .. A different
alignment function will give the
sequence1,2,1,2,3,4,3,4 for A(1), A(2)..
To allow spurious insertion, allow alignment with
word 0 (NULL) No. of possible alignments (I1)J
8
IBM Model 1 Generative Process
9
IBM Model 1 Details
  • No assumptions. Above formula is exact.
  • Choosing length P(JE) P(JE,I) P(JI)
  • Choosing Alignment all alignments equiprobable
  • Translation Probability

10
Training Alignment Models
  • Given a parallel corpora, for each (F,E) learn
    the best alignment A and the component
    probabilities
  • t(fe) for Model 1
  • lexicon probability P(fe) and alignment
    probability P(aiai-1,I)
  • How to compute these probabilities if all you
    have is a parallel corpora

11
Intuition Interdependence of Probabilities
  • If you knew which words are probable translation
    of each other then you can guess which alignment
    is probable and which one is improbable
  • If you were given alignments with probabilities
    then you can compute translation probabilities
  • Looks like a chicken and egg problem
  • EM algorithm comes to the rescue

12
Expectation Maximization (EM) Algorithm
  • Used when we want maximum likelihood estimate of
    the parameters of a model when the model depends
    on hidden variables
  • In present case, parameters are Translation
    Probabilities, and hidden Variables are alignment
    probabilities
  • Init Start with an arbitrary estimate of
    parameters
  • E-step compute the expected value of hidden
    variables
  • M-Step Recompute the parameters that maximize
    the likelihood of data given the expected value
    of the hidden variables from E-step

13
Example of EM Algorithm
Green house Casa verde
The house La case
Init Assume that any word can generate any word
with equal prob
P(lahouse) 1/3
14
E-Step
E-Step
15
M-Step
16
E-Step again
1/3
2/3
2/3
1/3
Repeat till convergence
17
Limitation Only 1-gtMany Alignments allowed
18
Phrase-based alignment
  • More natural
  • Many-to-one mappings allowed

19
Generating Bi-directional Alignments
  • Existing models only generate uni-directional
    alignments
  • Combine two uni-directional alignments to get
    many-to-many bi-directional alignments

20
Hindi-Eng Alignment
????????? ?? ??? ???? ?? ?????? ??????-???? ?????? ??
Goa
is
a
premier
beach
vacation
destination
21
Eng-Hindi Alignment
????????? ?? ??? ???? ?? ?????? ??????-???? ?????? ??
Goa
is
a
premier
beach
vacation
destination
22
Combining Alignments
????????? ?? ??? ???? ?? ?????? ??????-???? ?????? ??
Goa
is
a
premier
beach
vacation
destination
P4/5.8,R4/7.6
P2/3.67, R2/7.3
P5/6.83,R5/7.7
P6/9.67,R6/7.85
23
A Different Heuristic from Moses-Site
GROW-DIAG-FINAL(e2f,f2e) neighboring
((-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(
1,1)) alignment intersect(e2f,f2e)
GROW-DIAG() FINAL(e2f) FINAL(f2e)
GROW-DIAG() iterate until no new points added
for english word e 0 ... en for
foreign word f 0 ... fn if ( e aligned
with f ) for each neighboring point (
e-new, f-new ) if (( e-new, f-new )
in union( e2f, f2e ) and ( e-new not aligned
and f-new not aligned )) add
alignment point ( e-new, f-new ) FINAL(a) for
english word e-new 0 ... en for foreign
word f-new 0 ... fn if ( ( ( e-new,
f-new ) in alignment a) and ( e-new not aligned
or f-new not aligned ) ) add alignment
point ( e-new, f-new )
Proposed Changes After growing diagonal Align
the shorter sentence first And use alignments
only from corresponding directional alignment
24
Generating Phrase Alignments
????????? ?? ??? ???? ?? ?????? ??????-???? ?????? ??
Goa
is
a
premier
beach
vacation
destination
premier beach vacation ?????? ??????-????
a premier beach vacation destination ?? ??????
??????-???? ?????? ??
25
Using Moses and Giza
  • Refer to http//www.statmt.org/moses_steps.html

26
Steps
  • Install all packages in Moses
  • Input - sentence aligned parallel corpus
  • Training
  • Tuning
  • Generate output on test corpus (decoding)

27
Example
  • train.pr
  • hh eh l ow
  • hh ah l ow
  • w er l d
  • k aa m p aw n d w er d
  • hh ay f ah n ey t ih d
  • ow eh n iy
  • b uw m
  • k w iy z l ah b aa t ah r
  • train.en
  • h e l l o
  • h e l l o
  • w o r l d
  • c o m p o u n d w o r d
  • h y p h e n a t e d
  • o n e
  • b o o m
  • k w e e z l e b o t t e r

28
Sample from Phrase-table
  • b o b aa (0) (1) (0) (1) 1
    0.666667 1 0.181818 2.718
  • b b (0) (0) 1 1 1 1 2.718
  • c o m p o aa m p (2) (0,1) (1) (0) (1)
    (1,3) (1,2,4) (0) 1 0.0486111 1 0.154959
    2.718
  • c p (0) (0) 1 1 1 1 2.718
  • d w d w (0) (1) (0) (1) 1 0.75 1
    1 2.718
  • d d (0) (0) 1 1 1 1 2.718
  • e b ah b (0) (1) (0) (1) 1 1 1
    0.6 2.718
  • e l l ah l (0) (1) (1) (0) (1,2)
    1 1 0.5 0.5 2.718
  • e l l eh l (0) (0) (1) (0,1) (2)
    1 0.111111 0.5 0.111111 2.718
  • e l eh (0) (0) (0,1) 1 0.111111 1
    0.133333 2.718
  • e ah (0) (0) 1 1 0.666667 0.6
    2.718
  • h e hh ah (0) (1) (0) (1) 1 1 1
    0.6 2.718
  • h hh (0) (0) 1 1 1 1 2.718
  • l e b l ah b (0) (1) (2) (0) (1) (2)
    1 1 1 0.5 2.718
  • l e l ah (0) (1) (0) (1) 1 1 1
    0.5 2.718

l l o l ow (0) (0) (1) (0,1) (2)
0.5 1 1 0.227273 2.718 l l l (0) (0)
(0,1) 0.25 1 1 0.833333 2.718 l o l ow
(0) (1) (0) (1) 0.5 1 1 0.227273
2.718 l l (0) (0) 0.75 1 1
0.833333 2.718 m m (0) (0) 1 0.5
1 1 2.718 n d n d (0) (1) (0) (1)
1 1 1 1 2.718 n e eh n iy (1) (2) ()
(0) (1) 1 1 0.5 0.3 2.718 n e n iy
(0) (1) (0) (1) 1 1 0.5 0.3 2.718 n
eh n (1) () (0) 1 1 0.25 1 2.718 o o
m uw m (0) (0) (1) (0,1) (2) 1
0.5 1 0.181818 2.718 o o uw (0) (0)
(0,1) 1 1 1 0.181818 2.718 o aa (0)
(0) 1 0.666667 0.2 0.181818 2.718 o
ow eh (0) (0) () 1 1 0.2 0.272727
2.718 o ow (0) (0) 1 1 0.6
0.272727 2.718 w o r w er (0) (1) (1)
(0) (1,2) 1 0.1875 1 0.424242 2.718 w w
(0) (0) 1 0.75 1 1 2.718
29
Testing output
  • h o t ? hh aa t
  • p h o n e ? pUNK hh ow eh n iy
  • b o o k ? b uw k
Write a Comment
User Comments (0)
About PowerShow.com