Ch. 5 - PowerPoint PPT Presentation

About This Presentation
Title:

Ch. 5

Description:

Department of Atmospheric Sciences. ATM 404/504 Thermodynamics. Ch. ... Natural thermodynamic processes are, to one degree or another, irreversible. ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 21
Provided by: sds49
Category:
Tags: sciences

less

Transcript and Presenter's Notes

Title: Ch. 5


1
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • The 1st Law is a statement of energy conservation
    for processes we could consider.
  • However, it does not say whether or not any
    process could actually occur.
  • Thermodynamic processes fall into 1 of 3
    categories
  • Natural
  • Impossible (unnatural or anti-natural)
  • Reversible

2
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • Natural thermodynamic processes are, to one
    degree or another, irreversible.
  • Such processes move toward equilibrium.
  • Gas expanding into a vacuum
  • Heat conduction through a finite temperature
    gradient
  • Diffusion of a gas into another through a finite
    concentration gradient
  • Freezing of supercooled water

3
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • Reverse processes are not excluded by 1st Law.
  • Compression of gas under no external pressure
  • Heat flowing from a colder body to a warmer one
  • We know that these processes are impossible in
    nature.
  • Since they are not excluded by 1st Law, we need
    something else.
  • The 2nd Law of Thermodynamics takes care of this.

4
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • Depending on external conditions, natural
    processes can produce opposite changes in a
    system.
  • Irreversibility of such processes can be reduced
    by modifying their paths.
  • Attempt to change path so difference between
    actual values of state variables and values
    corresponding to equilibrium is reduced at all
    stages

5
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • Limit is a reversible process.
  • Ideal limit cannot be realized
  • Can approximate, however
  • Can be defined as
  • A series of states that differ infinitesimally
    from equilibrium
  • States follow each other infinitely slowly
  • Variables change in continuous way
  • Underlying assumption rate of process tends to
    zero as equilibrium approached

6
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • We can reframe our earlier examples to find a
    reversible analogue.
  • Expansion of gas with pressure p against external
    pressure p ?p
  • Heat conduction along an infinitesimal
    temperature gradient
  • By reversing the sign of infinitesimal difference
    from equilibrium, reversible process of opposite
    sense occurs (replace dp by dp, or dT/dx by
    dT/dx.
  • Key idea, slow changes departing very little from
    equilibrium.

7
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • For every reversible process there is a positive
    integrating factor 1/? of the differential
    expression ?Q, which is only dependent on the
    thermal state and which is equal for all
    thermodynamic systems.
  • This defines a state function S, the entropy,
    according to the exact differential,

8
Ch. 5 2nd Law of Thermodynamics
  • Entropy
  • The following is found to be true for
    irreversible processes
  • We can combine the two expressions to generalize
    for any process
  • The inequality and equality symbols correspond to
    irreversible and reversible processes,
    respectively.
  • MATHEMATICAL EXPRESSION OF 2nd LAW.

9
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle (thermal engine)
  • All processes are reversible.
  • Contains 2 isotherms, T1 and T2 lt T1, 2 adiabats
    ?2 lt ?1.
  • Steps are
  • Isothermal expansion T1 const
  • Adiabatic expansion ?1 const
  • Isothermal compression T2 const
  • Adiabatic compression ?2 const

10
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle (ideal gas)
  • Calculate work done and heat absorbed.
  • Step 1 (isothermal)
  • Step 2 (adiabatic)

11
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle (ideal gas)
  • Step 3 (isothermal)
  • Step 4 (adiabatic)
  • Total work done is (shaded)

12
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle
  • Total internal energy change is zero (as
    expected).
  • The gas absorbs heat Q1 gt 0 from the hotter
    reservoir.
  • Transfers (rejects) heat Q2 lt 0 to the colder
    reservoir.
  • For the adiabatic paths we have

13
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle
  • That leaves us with
  • Denote the heat absorbed by the gas at T1 as Q1
    and heat given up by gas at T2 as Q2, and since
    Q1 W12 and Q2 W34, we have
  • Since W gt 0, Q gt 0.

14
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle
  • We know that W Q1 Q2 and Q2 lt 0. From this
  • Part of heat absorbed from reservoir at T1
    becomes work.
  • The rest is given up to colder source at T2.
  • Efficiency, ? defined as ratio of work done to
    heat absorbed (at T1)
  • We know that Q1 gt 0 and Q2 lt 0 and
    also

15
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle Key Points
  • Thermodynamic efficiency is function only of the
    temperature of the reservoirs.
  • Cant do work with only one heat reservoir, i.e.,
    during the performance of work, some heat must be
    rejected to the a lower temperature reservoir
  • The greater the difference in temperature between
    the two sources, the more efficient the thermal
    engine
  • Example given of stronger winter circulations

16
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle Key Points
  • A transformation whose only final result is to
    transfer heat from a body at a given temperature
    to an body at a higher temperature is
    impossible.
  • Transfer of heat from cold body to warm body is
    impossible without external work being done.
  • We know that refrigerators and air
    conditioners/heat pumps exist, so such
    transformations can take place
  • Key point here is that external work must be done
    to drive the transformation (use electricity to
    run a compressor).

17
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle Key Points
  • Carnot Cycle allows definition of absolute
    temperature.
  • From the expressions for efficiency we get
  • recalling that Q1 gt 0 and Q2 lt 0.
  • Choose a reference temperature (T1 273.15 K)
  • Define all other colder temperatures by a Carnot
    Cycle operating from the reference temperature
    source (melting ice)
  • Measure heat transfers at each temperature to
    solve for T2
  • 0 K is where Q2 0, cold source absorbs no heat
    (perfect engine)

18
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle Key Points
  • Efficiency values vary between 0 and a maximum.
  • Perfectly irreversible engine has ? 0
  • Thermal losses due to friction and heat leakage
    maximize
  • No work is done (all heat lost)
  • Perfectly reversible engine has ? gt 0
  • Friction and heat leakage are zero
  • Maximum work is done
  • Carnot Cycle (engine) is the most efficient
    engine (perfectly reversible), has maximum
    efficiency.

19
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle Key Points
  • Carnot Theorem It is impossible to construct
    an engine operating between two heat sources that
    would have an efficiency greater than the
    efficiency of a Carnot cycle operating between
    the same heat sources.
  • Carnot engine is an ideal engine cannot be
    realized.
  • Note also that ? lt 0, i.e., T2 0 K cannot be
    reached.

20
Ch. 5 2nd Law of Thermodynamics
  • Carnot Cycle Key Points
  • So for cyclic processes we can write.
  • which leads to the combined form for any process
  • We also have, for the finite form, for
    completeness
Write a Comment
User Comments (0)
About PowerShow.com