Title: Direct photon interferometry
1Direct photon interferometry
- D.Peressounko
- RRC Kurchatov Institute
2Outlook
- Photons are special
- Penetrating gt Specific R(KT) dependence
- Massless gt Unusual Rinv and linv
interpretation - Rare gt Strong background
- Experimental review
- Completed experiments
- TAPS,WA98
- Ongoing
- PHENIX,STAR
- Developing
- ALICE
- Conclusions
3Accessing space-time dimensions of different
stages of the collision
- 31 hydro with first order phase transition.
- QGP phase includes pre-equilibrium pQCD
contribution
PbPb _at_ 17.2 AGeV
Rout
Rside
Rlong
hadr
QGP
mixed
D.P. Phys.Rev.Lett.93022301,2004
4 KT dependence of photon correlation radii
D.Srivastava, Phys.Rev.C71034905,2005
RHIC AuAu _at_ 200 AGeV
D.P. Phys.Rev.Lett.93022301,2004
T.Renk, hep-ph/0408218
5Predictions for correlation radii
RHIC, AuAu_at_200 AGeV, KT2GeV
System Rout(fm) Rside(fm) Rlong(fm) Rinv(fm)
gg 4.4 4.2 0.2 D.Srivastava, Phys.Rev.C71034905,2005
gg 4.3 3.9 1.2 3.0 D.Peressounko, Phys.Rev.Lett.93022301,2004
ee KT1 GeV 6.0 3.2 3.3 3.2 J.Alam et al., Phys.Rev.C70054901,2004
gg 5.5 3.0 1.6 3.0 J.Alam et al., Phys.Rev.C67054902,2003
gg 5.1 4.3 2.8 - T.Renk, hep-ph/0408218
Not LCMS system
6Qinv parameterization for massless particles
S(x) exp( - t2/t2 x2/Ro2 - y2/Rs2 - z2/Rl2),
C2(qo,qs,ql)1 exp( -qo2(Ro2 t2b2) -qs2Rs2
-ql2Rl2)
?d3q/qe C2(qo,qs,ql) d(Qinv2q2)
C2(Qinv)
(integrate in CM frame of the pair)
?d3q/qe d(Qinv2q2)
1/(4p)?1 exp-Qinv2(K02/M2cos2q (Ro2b2t2)
Rs2 sin2qsin2f Rl2sin2qcos2f ) dW
1linvexp-Qinv2Rinv2)
linv 1/(4p) ?exp - 4KT2(Ro2 t2)cos2qdW
Rinv ltRs,Rlgt (not Ro!)
For massless particles (g,e) Qinv
parameterization is very special!
7Qinv parameterization for massless particles (MC)
Set 1 Ro 6 Rs 6 Rl 6
Set 2 Ro 4 Rs 6 Rl 6
Set 3 Ro 2 Rs 6 Rl 6
Set 4 Ro 6 Rs 4 Rl 6
Set 5 Ro 6 Rs 2 Rl 6
Set 6 Ro 6 Rs 4 Rl 4
Set 7 Ro 4 Rs 4 Rl 4
Set 8 Ro 2 Rs 4 Rl 4
Set 9 Ro 6 Rs 2 Rl 2
linv Erf(2KTvRo2 t2)/(2KTvRo2 t2)
linv1/(2KTvRo2 t2)
8Background photon correlations
- Bose-Einstein p0 correlations
- Resonance decays
- Collective flow
g
g
p0
g
p0
g
p0
h
p0
p0
9p0 BE residual correlations
Rpp4 fm
Rpp5 fm
Rpp6 fm
C2pp1exp(-Qinv2Rpp2)
D.P. Phys.Rev.Lett.93022301,2004
10p0 BE residual correlations
A.Deloff and T.Siemiarczuk, ALICE internal note
INT-98-50
C2pp(D)1l/(1D2Rpp2)2
dNp/dppepx(-p/3GeV)
D1/2(k1-k2)
11p0 BE residual correlations
Varying strength
Varying width (and strength)
O.V.Utyuzh, G.Wilk, Nukleonika 49S15 (2004),
hep-ph/0312364
12TAPS detector setup
BaF2 25 cm long (12 X0) prism of hexagonal cross
section, the diameter of the inner circle being
5.9 cm (69 of the Moliere radius).
Distance to IP 62 cm
Min angle cut between photons 8.30
Typical photon energy 10 MeV
13TAPS mgg distribution and C2
86KrnatNi _at_ 60 AMeV
181Ta197Au _at_ 40 AMeV
Geant simulations
Comparison to BUU calculations
14WA98 setup
Number of events collected Peripheral
(20 min bias) 3897935 Central (10 min bias)
5817217
15Two photon correlation functions
16WA98 apparatus effects
Lmin 20 cm (5 modules)
Lmin 25 cm (6 modules)
Lmin 30 cm (7 modules)
Lmin 35 cm (9 modules)
100 lt KT lt 200 MeV
100 lt KT lt 200 MeV
200 lt KT lt 300 MeV
200 lt KT lt 300 MeV
17Hadrons and photon conversion
Contamination, (charged neutral)
pid
100ltKTlt200 200ltKTlt300
All (37 4) (22 4)
Narrow (16 1) (4 1)
Neutral ( 1 4) (1 4)
Narrow neutral (1 1) (1 1)
ltrue
1 (Ngdir)2
lobs
2 (Ngtot cont)2
(1 cont/ Ngtot)2
18Photon background correlations
Simulations
p0p0 Bose-Einstein correlations
Slope -(4.50.4)10-3 (GeV-1)
Elliptic flow
Slope -(3.10.4)10-3 (GeV-1)
Decays of resonances
K0s?2p0?4g K0L?3p0?6g h?3p0?6g w?p0g?3g
19Invariant correlation radius
C2(Qinv) 1 l/(4p) ? do exp - Qinv2 (Rs2 sin2q
sin2f Rl2 sin2q cos2f )
-
(Qinv2 4KT2)cos2q Ro2
Rpplong
Rgg
Rppside
(for massless particles!)
Rinv f(Rs,Rl)
Erf(2KTRo)
linv l
2KTRo
20Yield of direct photons
Correlation method
The lowest yield (Ro0)
Most probable yield (Ro6 fm)
Ngdir Ngtotal v2l
Subtraction method
Subtraction method, upper limit
Predictions
Erf(2KTRo)
linv l
hadronic gas
2KTRo
QGP
pQCD
sum
Predictions S. Turbide, R. Rapp, and C. Gale,
hep-ph/0308085.
21PHENIX setup
Lead Scintillator Lead scintillating plates
of 5.55.5 cm2 at a distance 510 cm from IP.
Lead Glass PbGl crystals 44 cm2 cross
section distance 550 cm from IP
22PHENIX Comparison to data
dAu collisions at vsNN200 GeV
23STAR
Use 1 gamma in TPC, 1 gamma in calorimeter.
Conclusions from the talk of J. Sandweiss on
RHIC-AGS users meeting, June 21, 2005, BNL
- A procedure has been developed which permits the
measurement of gamma-gamma HBT signals despite
the large background of gammas from p0 mesons - Gamma energy gt 1.0 GeV is required for the
residual p0 correlation to be small - No HBT calculation may be needed but appears to
be doable.
24ALICE setup
PHOS crystals PbW04 22 cm cross section
Distance to IP 460 cm
25ALICE unfolding and resolution
26ALICE photon correlations in HIJING event
Kt200 MeV
27Summary
- Direct photon and electron interferometry is
rather special subject due to penetrating nature,
zero mass and low yield. - Two-photon correlations were observed in two
experiments up to now. - Photon correlations are analyzed now at PHENIX
and STAR. - PHOS detector at ALICE is very promising tool due
to fine granularity and high spatial and energy
resolutions.
28PHENIX MC simulations
Kt 0.2 GeV
K?pp0
ct4.7 m
K0S?p0p0
ct0.02 m
K0L?3p0
ct15. m
h?3p0
Using measured spectra and yields for p0, kaons
and h
29Jan-e Alam et al., ee correlations
KT1 GeV
Not LCMS
J.Alam et al., Phys.Rev.C70054901,2004
30T.Renk
side
Side
out
Long
T.Renk, hep-ph/0408218
31Penetrating probes probe all stages?
RHIC AuAu _at_ 200 AGeV
D.P. Phys.Rev.Lett.93022301,2004
32Possible sources of distortion of correlation
function
- Apparatus effects (cluster splitting and merging)
- Hadron misidentification
- Photon conversion
- Photon background correlations
- Bose-Einstein correlations of parent p0
- Collective (elliptic) flow
- Residual correlations due to decays of
resonances