Title: Outline
1(No Transcript)
2Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
3Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
4Square lattice antiferromagnet
Ground state has long-range Néel order
5Square lattice antiferromagnet
Destroy Neel order by perturbations which
preserve full square lattice symmetry e.g.
second-neighbor or ring exchange.
6Square lattice antiferromagnet
Destroy Neel order by perturbations which
preserve full square lattice symmetry e.g.
second-neighbor or ring exchange.
7LGW theory for quantum criticality
S. Chakravarty, B.I. Halperin, and D.R. Nelson,
Phys. Rev. B 39, 2344 (1989)
8LGW theory for quantum criticality
A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B
49, 11919 (1994)
9LGW theory for quantum criticality
A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B
49, 11919 (1994)
10There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
11There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
Liquid of valence bonds has fractionalized
S1/2 excitations
12There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
Liquid of valence bonds has fractionalized
S1/2 excitations
13There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
Liquid of valence bonds has fractionalized
S1/2 excitations
14There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
Liquid of valence bonds has fractionalized
S1/2 excitations
15There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
Liquid of valence bonds has fractionalized
S1/2 excitations
16There is no state with a gapped, stable S1
quasiparticle and no broken symmetries
Liquid of valence bonds has fractionalized
S1/2 excitations
17Possible theory for fractionalization and
topological order
18Possible theory for fractionalization and
topological order
19Possible theory for fractionalization and
topological order
20Possible theory for fractionalization and
topological order
21Possible theory for fractionalization and
topological order
22Possible theory for fractionalization and
topological order
23Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
24Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
25Z2 gauge theory for fractionalization and
topological order
26Z2 gauge theory for fractionalization and
topological order
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev, Phys. Rev. B 45, 12377 (1992)
27Z2 gauge theory for fractionalization and
topological order
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev, Phys. Rev. B 45, 12377 (1992)
28(No Transcript)
29Experimental realization CsCuCl3
30Phase diagram of gauge theory of spinons
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
31Phase diagram of gauge theory of spinons
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
32Phase diagram of gauge theory of spinons
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
33Characteristics of Z2 spin liquid
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
34Characteristics of Z2 spin liquid
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
35Characteristics of Z2 spin liquid
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
36Characteristics of Z2 spin liquid
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
37Characteristics of Z2 spin liquid
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
38Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
39Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
40Phase diagram of gauge theory of spinons
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
41Phase diagram of gauge theory of spinons
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991) S. Sachdev and N. Read, Int. J. Mod. Phys.
B 5, 219 (1991)
42Quantum theory for destruction of Neel order
Partition function on cubic lattice in spacetime
LGW theory weights in partition function are
those of a classical ferromagnet at a
temperature g
43Missing ingredient Spin Berry Phases
44Quantum theory for destruction of Neel order
Partition function on cubic lattice in spacetime
LGW theory weights in partition function are
those of a classical ferromagnet at a
temperature g
45Quantum theory for destruction of Neel order
Coherent state path integral on cubic lattice in
spacetime
Modulus of weights in partition function those
of a classical ferromagnet at a temperature g
46Quantum theory for destruction of Neel order
Partition function on cubic lattice
S. Sachdev and K. Park, Annals of Physics, 298,
58 (2002)
47Quantum theory for destruction of Neel order
Partition function on cubic lattice
Partition function expressed as a gauge theory of
spinor degrees of freedom
S. Sachdev and K. Park, Annals of Physics, 298,
58 (2002)
48Large g effective action for the Aaµ after
integrating zaµ
This theory can be reliably analyzed by a duality
mapping. The gauge theory is in a confining
phase, and there is VBS order in the ground
state. (Proliferation of monopoles in the
presence of Berry phases).
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). S. Sachdev and R. Jalabert, Mod. Phys.
Lett. B 4, 1043 (1990). K. Park and S. Sachdev,
Phys. Rev. B 65, 220405 (2002).
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59or
?
g
0
60Monopole fugacity
Arovas-Auerbach state
61Phase diagram of S1/2 square lattice
antiferromagnet
or
g
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev
and M.P.A. Fisher, Science 303, 1490 (2004).
62Phase diagram of gauge theory of spinons
63Phase diagram of gauge theory of spinons
64Phase diagram of gauge theory of spinons
Critical U(1) spin liquid
65Large scale Quantum Monte Carlo studies
A.W. Sandvik, S. Daul, R. R. P. Singh, and D. J.
Scalapino, Phys. Rev. Lett. 89, 247201
(2002) A.W. Sandvik and R.G. Melko, Phys. Rev. E
72, 026702 (2005).
A.W. Sandvik, Phys. Rev. Lett. 98, 2272020
(2007). R.G. Melko and R.K. Kaul, arXiv0707.2961
66Easy-plane model
Spin stiffness
67Easy-plane model
Valence bond solid (VBS) order in expectation
values of plaquette and exchange terms
68SU(2) invariant model
Strong evidence for a continuous deconfined
quantum critical point
T. Senthil, A. Vishwanath, L. Balents,
S. Sachdev and M.P.A. Fisher, Science 303, 1490
(2004).
A.W. Sandvik, Phys. Rev. Lett. 98, 2272020 (2007).
69SU(2) invariant model
R.G. Melko and R.K. Kaul, arXiv0707.2961
70SU(2) invariant model
Probability distribution of VBS order ? at
quantum critical point
Emergent circular symmetry is evidence for U(1)
photon and topological order
A.W. Sandvik, Phys. Rev. Lett. 98, 2272020 (2007).
71Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
72Outline
1. Quantum disordering magnetic order
Collinear order and confinement 2. Z2 spin
liquids Noncollinear order and
fractionalization 3. Gapless U(1) spin liquids
Deconfined criticality 4. Doped spin
liquids Superconductors with topological
order
73Hole dynamics in an antiferromagnet across a
deconfined quantum critical point, R. K. Kaul,
A. Kolezhuk, M. Levin, S. Sachdev, and T.
Senthil, Physical Review B 75 , 235122 (2007)
Algebraic charge liquids and the underdoped
cuprates, R. K. Kaul, Y. B. Kim, S. Sachdev, and
T. Senthil, arXiv0706.2187
74Phase diagram of gauge theory of spinons
Critical U(1) spin liquid
75Phase diagram of gauge theory of spinons and
holons
Add a finite concentration of charge carriers
Critical U(1) spin liquid
76 Phase diagram of doped antiferromagnets
or
La2CuO4
Hole density x
77(No Transcript)
78(No Transcript)
79Phase diagram of lightly doped antiferromagnet
80(No Transcript)
81Phase diagram of lightly doped antiferromagnet
82Phase diagram of lightly doped antiferromagnet
83A new non-Fermi liquid phase The holon metal An
algebraic charge liquid.
84N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J.
Levallois, J.-B. Bonnemaison, R. Liang,
D. A. Bonn, W. N. Hardy, and L. Taillefer,
Nature 447, 565 (2007)
85- Holon pairing leading to d-wave
superconductivity
- First consider holon pairing in the Neel state,
where holonhole. - This was studied in V. V. Flambaum, M. Yu.
Kuchiev, and O. P. Sushkov, Physica C 227, 267
(1994) V. I. Belincher et al., Phys. Rev. B 51,
6076 (1995). They found p-wave pairing of holons,
induced by spin-wave exchange from the sublattice
mixing term . This corresponds to d-wave
pairing of physical electrons
86- Holon pairing leading to d-wave
superconductivity
87- Holon pairing leading to d-wave
superconductivity
-
Gap nodes
-
88- Holon pairing leading to d-wave
superconductivity
-
Gap nodes
-
89Low energy theory of holon superconductor
90Low energy theory of holon superconductor
91(No Transcript)
92Holon-hole metal
Holon-hole superconductor
93Conclusions
1. Theory for Z2 and U(1) spin liquids in quantum
antiferromagnets, and evidence for their
realization in model spin systems. 2. Algebraic
charge liquids appear naturally upon adding
fermionic carriers to spin liquids with bosonic
spinons. These are conducting states with
topological order. 3. The holon
metal/superconductor, obtained by doping a
Neel-ordered insulator, matches several observed
characteristics of the underdoped cuprates.