Title: Blind Beamforming for Cyclostationary Signals
1Blind Beamforming for Cyclostationary Signals
-
- Array Processing Project
- Preeti Nagvanshi
- Aditya Jagannatham
2Conventional Beamforming
- Based on DOA estimation
- Intensive Computation, Calibration
- Based on known training signal
- Synchronization, Sacrifice of bandwidth
Blind Beamforming
- No reference signal required
- No advance knowledge of the correlation
properties - No Calibration is necessary
- Selectivity is achieved using knowledge of cycle
frequency
3Cyclostationary Statistics
- b(K) is random, s(t) does not contain first order
periodicities
- b2(t) 1 (BPSK), s2(t) is periodic
- Spectral Lines at ? (2fc mf b)
4Data Model
Data Model
- sk(n), k 1,.,K K narrowband signals from
DOA ?k - i(n) Interferers, v(n) white noise
- x(n) is Mx1 complex vector, M array size
5Cyclic Correlation
- - time average over infinite observation
period - no is some time shift, ? is the cycle frequency
Cyclic Conjugate Correlation
6Cyclic Adaptive Beamforming(CAB)
- wCAB is a consistent estimate of d(?)
Multiple desired signals (same ?)...
7Constrained Cyclic Adaptive Beamforming(C-CAB)
- True DOA of the desired signal is unknown, wCAB ?
d(?) - C-CAB ? MPDR with d(?) replaced by wCAB
Robust Cyclic Adaptive Beamforming(R-CAB)
8Fast Adaptive Implementation
- Rxu(N) is updated every sample
- Use matrix inversion lemma to compute the
inverse - Complexity wCAB(N) is O(M), wCCAB(N) is O(M2)
compared to O(M3)
9Simulation
Experiment1-Carrier Recovery
- 2 BPSK signals
- 100 cosine rolloff
- Data rate - 5Kbps
- Carrier - 5MHz
- Carrier offset - 0.00314
- ?s 40º, ?I 120º
- ? 0
- M 4 (array size)
10Simulation (contd.)
Experiment2-Moving source DOA estimation
- Sampling - 150K samples/s
- ?s 40º - 130º
- SNR 8 dB
- SNRI 4 dB
- M 16 (array size)
- Updated every 0.1s
- Uses 60 symbols(300 Samp)
- Interferer at 30º
11Simulation (contd.)
Experiment2-Moving source DOA estimation (contd.)
12Simulation (contd.)
Experiment3-Multipath signals
- ?s1 30º, ?s2 40º, ?I 120º
- SNR1 15 dB
- SNR2 12 dB
- SNRI 1 dB
- M 10 (array size)
13Simulation (contd.)
Experiment4-Multiple signals
- ?s1 130º, ?s2 60º, ?I 10º
- SNR1 15 dB
- SNR2 9 dB
- SNRI 1 dB
- M 15 (array size)
14Conclusions
- Achieved blind beamforming exploiting the
cyclostationarity property of the communication
signal - Using structure of the signals better signal
processing techniques can be developed
References
- Blind Adaptive Beamforming for Cyclostationary
Signals- Trans. SP, 1996 - Statistical spectral analysis A non
probabilistic theory- William A. Gardner