Blind Beamforming for Cyclostationary Signals - PowerPoint PPT Presentation

About This Presentation
Title:

Blind Beamforming for Cyclostationary Signals

Description:

No reference signal required. No advance knowledge of the ... Interferer at 30 . Simulation (contd.): Experiment2-Moving source DOA estimation (contd. ... – PowerPoint PPT presentation

Number of Views:128
Avg rating:3.0/5.0
Slides: 15
Provided by: Raj139
Learn more at: http://dsp.ucsd.edu
Category:

less

Transcript and Presenter's Notes

Title: Blind Beamforming for Cyclostationary Signals


1
Blind Beamforming for Cyclostationary Signals
  • Array Processing Project
  • Preeti Nagvanshi
  • Aditya Jagannatham

2
Conventional Beamforming
  • Based on DOA estimation
  • Intensive Computation, Calibration
  • Based on known training signal
  • Synchronization, Sacrifice of bandwidth

Blind Beamforming
  • No reference signal required
  • No advance knowledge of the correlation
    properties
  • No Calibration is necessary
  • Selectivity is achieved using knowledge of cycle
    frequency

3
Cyclostationary Statistics
  • b(K) is random, s(t) does not contain first order
    periodicities
  • b2(t) 1 (BPSK), s2(t) is periodic
  • Spectral Lines at ? (2fc mf b)

4
Data Model
Data Model
  • sk(n), k 1,.,K K narrowband signals from
    DOA ?k
  • i(n) Interferers, v(n) white noise
  • x(n) is Mx1 complex vector, M array size

5
Cyclic Correlation
  • - time average over infinite observation
    period
  • no is some time shift, ? is the cycle frequency

Cyclic Conjugate Correlation
6
Cyclic Adaptive Beamforming(CAB)
  • wCAB is a consistent estimate of d(?)

Multiple desired signals (same ?)...
7
Constrained Cyclic Adaptive Beamforming(C-CAB)
  • True DOA of the desired signal is unknown, wCAB ?
    d(?)
  • C-CAB ? MPDR with d(?) replaced by wCAB

Robust Cyclic Adaptive Beamforming(R-CAB)
8
Fast Adaptive Implementation
  • Rxu(N) is updated every sample
  • Use matrix inversion lemma to compute the
    inverse
  • Complexity wCAB(N) is O(M), wCCAB(N) is O(M2)
    compared to O(M3)

9
Simulation
Experiment1-Carrier Recovery
  • 2 BPSK signals
  • 100 cosine rolloff
  • Data rate - 5Kbps
  • Carrier - 5MHz
  • Carrier offset - 0.00314
  • ?s 40º, ?I 120º
  • ? 0
  • M 4 (array size)

10
Simulation (contd.)
Experiment2-Moving source DOA estimation
  • Sampling - 150K samples/s
  • ?s 40º - 130º
  • SNR 8 dB
  • SNRI 4 dB
  • M 16 (array size)
  • Updated every 0.1s
  • Uses 60 symbols(300 Samp)
  • Interferer at 30º

11
Simulation (contd.)
Experiment2-Moving source DOA estimation (contd.)
12
Simulation (contd.)
Experiment3-Multipath signals
  • ?s1 30º, ?s2 40º, ?I 120º
  • SNR1 15 dB
  • SNR2 12 dB
  • SNRI 1 dB
  • M 10 (array size)

13
Simulation (contd.)
Experiment4-Multiple signals
  • ?s1 130º, ?s2 60º, ?I 10º
  • SNR1 15 dB
  • SNR2 9 dB
  • SNRI 1 dB
  • M 15 (array size)

14
Conclusions
  • Achieved blind beamforming exploiting the
    cyclostationarity property of the communication
    signal
  • Using structure of the signals better signal
    processing techniques can be developed

References
  • Blind Adaptive Beamforming for Cyclostationary
    Signals- Trans. SP, 1996
  • Statistical spectral analysis A non
    probabilistic theory- William A. Gardner
Write a Comment
User Comments (0)
About PowerShow.com