Constructing visual models with a latent space approach - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Constructing visual models with a latent space approach

Description:

Constructing visual models with a latent space approach. Florent Monay. Pedro Quelhas ... Classification of visual scenes using Affine invariant Regions and ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 24
Provided by: velblodVid
Category:

less

Transcript and Presenter's Notes

Title: Constructing visual models with a latent space approach


1
Constructing visual models with a latent space
approach
  • Florent Monay
  • Pedro Quelhas
  • Daniel Gatica-Perez
  • Jean-Marc Odobez

IDIAP Research Institute, Martigny, Switzerland
2
Acknowledgements
  • CARTER
  • Classification of visual scenes using Affine
    invariant Regions and TExt Retrieval methods
  • LAVA (data)
  • Learning for Adaptable Visual Assistants

3
Outline
  • Task
  • Image representation
  • Latent structure analysis
  • Classification results
  • Conclusion

4
Task
  • Classification of object categories
  • Use of non-labelled data
  • Learn latent structure
  • Class-specific features

5
7 'objects' classes (LAVA)
  • 792 faces
  • 150 buildings
  • 150 trees
  • 216 phones
  • 201 cars
  • 125 bikes
  • 142 books

6
Outline
  • Task
  • Image representation
  • Latent structure analysis
  • Classification results
  • Conclusion

7
Local image descriptors
Difference of Gaussians (DoG)
Edge direction histogram (4x4 grid, 8 directions)
David G. Lowe 03
IMAGE
Interest points
SIFT local descriptors
48 25 10 8 26 8 5 11 ... 10 7
22 51 90 40 19 5 ... ... ... 22 23 53
71 34 10 7 67 ...
Pattern Analysis and Machine Learning in Computer
Vision Workshop (2004)
8
Quantizing SIFT descriptors
DoG SIFT
K-means quantization
IMAGE set
SIFT local descriptors
Visterms
  • Visterms ? local image patterns

9
Bag-of-Visterms (BOV)
DoGSIFTK-means
DoGSIFTK-means
10
Outline
  • Task
  • Image representation
  • Latent structure analysis
  • Classification results
  • Conclusion

11
Probabilistic LSA Hofmann 1999
P(vj , di) P(di)?kP(zk di)P(vj zk)
P(vj , di) P(di)?kP(zk di)P(vj zk)
P(vj , di) P(di)?kP(zk di)P(vj zk)
P(vj , zk, di) P(di)P(zk di)P(vj zk)
  • P(vj zk) probability of visterm j given
    aspect k
  • P(zk di) probability of aspect k given image i

12
Aspect-based image ranking (1)
  • Given an aspect zk, images are ranked with
    respect to
  • P(d zk) P(zk d)P(d)/P(zk)
  • cf. demo

13
Aspect-based image ranking (2)
  • Precision RetRel/Ret
  • Recall RetRel/Rel

Faces
Cars
14
Aspect-based image ranking (3)
Trees
Bikes
15
Aspect-based representation (1)
16
Aspect-based representation (2)
17
Outline
  • Task
  • Image representation
  • Latent structure analysis
  • Classification results
  • Conclusion

18
Experimental setup
non-test BOV 90
test BOV 10
P(z d) training 90, 50, 30, 10, 5
P(z d) test
1776 images (BOV)
10 runs
19
Multi-class svm
  • Gaussian kernel
  • One classifier per class (one-against-all)
  • Std deviation computed by (5-fold)
    cross-validation
  • BOV- vs. aspects

20
SVM classification results
  • Total classification error (60 aspects)

21
Confusion matrix
22
Conclusion
  • Efficient use of unlabelled data to improve
    classification
  • Latent structure ? browsing?
  • Mixture of aspects are observed in images
  • Multi-label?

23
The end
  • Questions?
Write a Comment
User Comments (0)
About PowerShow.com