Distributed Video Coding with Unsupervised Learning of Motion Estimation - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Distributed Video Coding with Unsupervised Learning of Motion Estimation

Description:

Average Rate for Lossless Distributed Video Coder. 18. Sequence Rate Trace for ... Our coders achieve rates close to oracle. Better than no estimation ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 25
Provided by: stephan91
Category:

less

Transcript and Presenter's Notes

Title: Distributed Video Coding with Unsupervised Learning of Motion Estimation


1
Distributed Video Coding with Unsupervised
Learning of Motion Estimation
EE 398B Project
  • Young Min Kim
  • Stephanie Kwan
  • Karen Zhu

2
Outline
  • Distributed Source Coding
  • Wyner-Ziv Video Coder
  • Distributed Stereo Image Coder
  • Lossless Pixel Domain Distributed Video Coding
  • Lossy Pixel Domain Distributed Video Coding
  • Simulation Results
  • Conclusion

3
Distributed Video Coding
  • Conventional Video Coding
  • High complexity encoder
  • Low complexity decoder
  • Distributed Video Coding
  • Low complexity encoder
  • High complexity decoder

4
Slepian-Wolf Theorem on Lossless Distributed
Coding
Separate Encoding
Joint Decoding
Decoder
(X,Y)
Encoder 1
X
(X,Y)
Y
Encoder 2
Slepian-Wolf Theorem
5
Wyner-Ziv Lossy Coding
Wyner-Ziv Coding
Separate Encoder
Joint Decoder
X
X
Y
Side Information available at Encoder
Joint Encoder
Joint Decoder
X
X
Y
Y
Wyner-Ziv Coding Performance
0
6
Wyner-Ziv Video Coder
Interframe Decoded
Intraframe Encoded
Decoded WZ Frames
WZ Frames
Slepian-Wolf Coder
Quantization
Reconstruction
q
Turbo Encoder
Turbo Decoder
S
S
Side Information
S
Request bits
Interpolation or Extrapolation
Conventional Intraframe Encoder
Conventional Intraframe Decoder
K
K
Decoded Key Frames
Key Frames
7
Distributed Compression of Stereo Images with
Unsupervised Learning
Request bits
LDPC Encoder
LDPC Decoder (M-step)
X
Termination Threshold
?
S
X
?
Disparity Estimator (E-step)
Y
8
Lossless Distributed Video Coder with
Unsupervised Learning of Motion
Request bits
LDPC Encoder
LDPC Decoder (M-step)
Termination Threshold
?
X
X
Decoded Frames
?
Motion Estimator (E-step)
Side Information
Y
Previous Reconstructed Frame
9
LDPC Coding
10
Lossless Distributed Video Coder with
Unsupervised Learning of Motion
Request bits
LDPC Encoder
LDPC Decoder (M-step)
Termination Threshold
?
X
X
Decoded Frames
?
Motion Estimator (E-step)
Side Information
Y
Previous Reconstructed Frame
11
2D Motion Estimation
12
Motion Vector Prediction (MVP)
  • Change initial probability to the motion vector
    found from previous two frames

B
13
Lossy Distributed Video Coder
Intraframe Encoded
Interframe Decoded
Request bits
Reconstructed Frames
LDPC Encoder
LDPC Decoder (M-step)
Termination Threshold
Q
Q-1
S
S
Non-Key Frames
?
?
Side Information
Motion Estimator (E-step)
Previous Reconstructed Frame
Q
Conventional Intraframe Encoder
Conventional Intraframe Decoder
K
K
Decoded Key Frames
Key Frames
14
Comparison Schemes for Lossless Coding
  • Proposed Schemes
  • 2D motion estimation (2DME)
  • 2D motion estimation motion vector prediction
    (MVP)
  • Reference Schemes
  • H(XY) Slepian-Wolf bound
  • Motion estimation with motion oracle
  • No motion estimation
  • Intra-coding

15
Comparison Schemes for Lossy Coding
  • Proposed Schemes (2DME MVP)
  • 7 bits coder
  • 6 bits coder
  • 5 bits coder
  • Reference Schemes
  • H(XY) for given quantization level
  • Motion estimation with motion oracle
  • No motion estimation
  • Intra-coding

16
Simulation Setting
  • Foreman 65-95, Carphone 180-210
  • 8 bitplanes for lossless, 5, 6, 7 bitplanes for
    lossy
  • Frame size 72x88, Block size 8x8
  • Motion vector between -5 and 5
  • Initial probability
  • 2DME - 0.75 at (0,0)
  • MVP - 0.75 at previous motion vector

17
Average Rate for Lossless Distributed Video Coder
18
Sequence Rate Trace for Lossless Distributed
Video Coder
19
Rate-PSNR Curve for Lossy Distributed Video Coder
20
Conclusion
  • Our coders achieve rates close to oracle
  • Better than no estimation
  • Motion estimation is more effective for more bits
    and considerable motion
  • Better than intra-coding for lossless case and
    most of lossy cases

21
  • Questions?

22
AppendixSequence Rate Trace (7 bits)
23
AppendixSequence Rate Trace (6 bits)
24
AppendixSequence Rate Trace (5 bits)
Write a Comment
User Comments (0)
About PowerShow.com