Title: ECE 450 Introduction to Robotics
1ECE 450 Introduction to Robotics
- Section 50883
- Instructor Linda A. Gee
- 9/14/99
- Lecture 05
2Relative Transformations in Robot Workspace
- Assign a separate coordinate system to each part
of the assembly - O4 Xt(4), Yt(4) Zt(4)
- Pt(0) Xt(0), Yt(0) Zt(0)
- Hi,n
- ? Hi,i1 Hi,i1 Hi1,i2 Hn-1,n
n-1
i1
3Relative Transformations contd
Xt(n) Yt(n) Zt(n) 1
Xt(i) Yt(i) Zt(i) 1
H1,n
Pt(0) H0,4 Pt(4)
4Transformations in the Workspace
Xt(4) Yt(4) Zt(4) 1
Xt(0) Yt(0) Zt(0) 1
H0,1 H1,2 H2,3 H3,4
To move a robot gripper tool to point Pt, obtain
its coordinates by using homogeneous
transformations.
5Assembly Workspace
Pt
Not drawn to scale
z4
y4
z3
Top View
x4
O4
O3
1
5
y3
x3
z2
10
3
O2
y2
1
1
z0
x2
z1
3
2
2
y1
4
O0
O1
x1
5
y0
x0
6Workspace Example
- Given
- O0 (0,0,0) and O1 (-5,10,10)
- Pt in O4 xt(4) 5
- yt(4) 3
- zt(4) 6
- Find Pt in O0
7Method
- Calculate the homogeneous transformation matrices
from O0 to O4 - Define H0,1 , H1,2 , H2,3 , H3,4 such that
- H0,4 H0,1 H1,2 H2,3 H3,4
8Homogeneous Transformation Matrices
H 0,1
0 -1 0 -5
angle ? 90 degrees rotated about z-axis
1 0 0 10
0 0 1 10
0 0 0 1
0 1 0 4
H 1,2
angle ? -90 degrees rotated about z-axis
-1 0 0 2
0 0 1 2
0 0 0 1
9Homogeneous Transformation Matrices contd
1 0 0 0
no rotation translation only
H 2,3
0 1 0 0
0 0 1 10
0 0 0 1
0 -1 0 1
H3,4
angle ? 90 degrees rotated about z-axis
1 0 0 -2
0 0 1 1
0 0 0 1
10Solving for the Composite Transformation Matrix
H0,4
Xt(4) Yt(4) Zt(4) 1
Xt(0) Yt(0) Zt(0) 1
11Solution
5 3 6 1
Xt(0) Yt(0) Zt(0) 1
Xt(0) -9 Yt(0) 17 Zt(0) 29
Pt(0) Xt(0), Yt(0) Zt(0)