Title: Gas in the Local Group
1Gas in the Local Group
- James Binney Filippo Fraternali
- Oxford University
2Outline
- Missing baryons
- Infall and HVCs
- Extraplanar gas in external galaxies
- The hot halo
- Conclusions
3Missing baryons
- Negative vlos of M31 ) MLG4.81012M (Kahn
Woltjer 59 ff) - ?b/?m0.17 (Spergel et al 03)
- If MM31'1.5MMW (cf Wilkinson Evans 99)
- But LV(MW) ' 1.51010L, so M ' 3-51010M
- Implies most baryons missing
- Klypin, Zhao Somerville (02) have MMW1012M
and half baryons missing
4Still infalling?
- Muller Oort Raimond (63) found HI at highly
anomalous velocities - HVCs mapped at ever higher sensitivity !
Leiden-Dwingeloo (Hartman Burton 1997)
HIPASS (Barnes et al 01) surveys - Are HVCs distant massive?
(Oort 70 Blitz et al 99) - Efforts to detect massive extragalactic clouds in
other groups repeatedly failed (Pisano Wilcots
03) - Clouds usually have detectable H? emission (Tufte
et al 02 Putman et al 03)
5Extraplanar gas
- Some HVCs associated with LG galaxies (Magellanic
Stream Andromeda clouds) - Most are within MW and of low mass (Westmeier 03)
- Extend to Nlt1019 cm-2 at which HI hard to detect
(Hoffman et al 04 Richter et al 05) - Significant covering factor
- Have complex shapes (Richter et al 05)
- Local clouds show net infall v ' 50 km/s
(de Heij et al 02 Wakker 04)
6Outside view
- Counterparts of HVCs now studied in external
galaxies - (M101 van der Hulst Sancisi NGC
5668 Schulman et al 94-6 NGC 891, NGC
2403 Swaters et al 97 ! Fraternali, Oosterloo
Sancisi 04)
7Extra-planar gas in NGC 891
- Sancisi Allen 1979
- NH 5 1020 cm-2
- Swaters et al. 1997
- NH 7 1019 cm-2
- Oosterloo et al. 2005
- NH 1.7 1019 cm-2
- Sancisi Allen 1979
- NH 5 1020 cm-2
- Swaters et al. 1997
- NH 7 1019 cm-2
- Oosterloo et al. 2005
- NH 1.7 1019 cm-2
- Sancisi Allen 1979
- NH 5 1020 cm-2
- Swaters et al. 1997
- NH 7 1019 cm-2
- Oosterloo et al. 2005
- NH 1.7 1019 cm-2
8NGC891 Low rotation of extra-planar gas
Fraternali 2005
9NGC 2403
.Distance 3 Mpc .Type Sc .Inclination
62 .Non-interacting .Very similar to M33
10NGC2403 Extra-planar gas
Forbidden gas
130 km/s
Extra-planar gas
Fraternali, Oosterloo, Sancisi, van Moorsel 2001
11NGC2403 Non circular motions
Thin disc
Extra-planar gas
12Non-circular motions
13NGC 6946 Extra-planar gas and SF
WRST
Boomsma PhD 2005
14Summary (observations)
- Extra-planar detected up to 15 kpc from plane
- Rotation lower than the disc
- High velocities (100-200 km s-1)
- Link with star formation?
15How common is halo gas?
- Halo gas (HI) found and studied in 7 galaxies
- NGC891, N2403, N6946, N253 (Boomsma et al. 2005),
- N4559 (Barbieri et al. 2005), UGC7321 (Matthews
Wood 2003), - NGC2613 (Irwin Chaves 2003).
16Extra-planar gas and star formation
17Dynamical models
Previous works
- A barotropic pp(r) fluid in a gravitational
field corotates (Poincaré, 1893)
- Hydrostatic models for non-barotropic fluid show
gradient in - rotation velocity but also high temperatures
- (Barnabé, Ciotti, Fraternali, Sancisi, AA,
submitted)
- Galactic fountain gas circulation
(disc-halo-disc) - (Shapiro Field, ApJ 1976 Bregman, ApJ 1980)
- Ballistic models disagreement between predicted
gradient in - rotation velocity and H? data
- (Collins, Benjamin Rand, AA 2002)
18Fountain model(Shapiro Field, ApJ 1976
Bregman, ApJ 1980)
New work (Fraternali B 05)
- Clouds ejected from circular orbits with
distributions in v, ?
- Clouds move ballistically as in Collins,
Benjamin Rand, AA 02, but may not be visible
until zmax or rmax
- Axisymmetry exploited to build pseudo-data cube
- Clouds return to disk on first or second passage
through z0 - lt4 of SN energy needed
19Dynamical model
- Continuous flow of particles from the disc to
the halo
- Initial conditions distribution of kick
velocities
- Potential exponential discs bulge DM halo
- Integration in the (R,z) plane, then
distribution along ?
- At each dt projection along the line of sight
- Stop at the first or second passage through the
disc
- Pseudo-cube to be compared with HI data cube
20Model constraint vertical distribution
Vkick 75 km s-1 Mhalo 2 109 M?
21N891 inflow/outflow
Travel times
Energy input lt4 of energy from SNe
22NGC 891 Lack of low angular momentum
Fast rotating gas
?NEED FOR LOW ANGULAR MOMENTUM MATERIAL
23NGC2403 lagging gas
Vkick 70 km s-1 Mhalo 5 108 M?
24NGC2403 inflow/outflow
Radial outflow
?NEED FOR INFALLING MATERIAL
25Second-passage models
V?
VR
Vz
V?
VR
Vz
26Phase-change models
NGC 2403
NGC 891
Fast rotating gas
27Phase-change models
Vertical motions
28N2403 substructures
29Inside view
30High Velocity Clouds
Forbidden gas ?v ? 100 km s-1 M ? 5 106 MO
Complex C ?v ? 100 km s-1 If d ? 10 kpc
M ? 107 MO
Complex A M ? 106 MO d ? 8-10 kpc ?v ? 100 km s-1
Filament ?v ? 80 km s-1 M ? 107 MO
Low metallicity Z0.1-0.3 solar (Tripp et at.
2003)
Wakker et al. 2003 Wakker Van Woerden 1997
31Summary (models)
- Models reproduce the vertical extent with
reasonable energy - input (lt4 SN energy)
- Failure in NGC891 lack of low angular momentum
- Need for drag
- Failure in NGC2403 lack of inflow
- Need for accretion
- Seen from inside, a successful cloud model would
look like HVC population
- But must reverse outflow and diminish rotation
32The WHIM
NGC 253 Boomsma et al 05
- ?CDM simulations without feedback suffer from
overcooling - Natural solution fast mass loss during GF
- Direct evidence from Moutflow' MSF (Pettini
et al 01 Steidel et al 04) - Also manifest connection of outflow to HVCs (NGC
6946 and ) - So expect accumulation of gas _at_
33The hot halo
- Munch (52) detected Ca II and Na I interstellar
lines at v-vLSRgt20 km/s even at high b - Spitzer (56) argued that cold absorbing clouds
must be confined by pressure p/kB'104 K cm-3 of
gas with T' Tvir - At Tvir, Mgas 0.52109 (Rmax/R0) M
- So ?CDM requires Mgt1011M halo to extend to
Rmax'1Mpc
34- Copernicus, HST and FUSE detect absorption in C
IV, O VI, etc - O VI important because
ionize E(O V)114eV
O VI emission peaks _at_ T 3105 K
35HI emission O VI absorption
Sembach et al 02
- Consistent with O VI at interface of HI and WHIM
- Possible evidence that O VI expanding relative to
HI
36Interaction of HVCs with WHIM
- Density contrast Tvir/THI' 100-104
- Analogous to a transonic sprinkler
- Ram-pressure drag (Benjamin Danly 97)
- ? 21 N19/(n-3v200) Myr
- Tflight ' 100 Myr
- Drag important
37Evidence for drag
- Structure of leading arm
of Magellanic stream - Head-tail structure of HVCs (Bruns
et al 01) - Z lt Z for complex C
HVC
CHVCs
Putman et al 03
38Problems
- Fountain circulates large mass through
extraplanar gas MHI ' 5108 M every 100 Myr - If ejected gas loses 10 of its angular momentum,
halo will become corotating if not extensive
(Mgas 5108 (Rmax/R0) M) - Naively expect moving clouds to be ablated
- Net inflow and low Z (10 Zsun) imply
condensation prevails
39Conclusions
- ? CDM predicts that most baryons are hidden
- Observations of external groups galaxies show
that HVCs lie at 10 100 kpc distances - HVCs are generated by star formation
- The basic fountain model does not reproduce lag
in rotation net infall - Much evidence for interaction of HI with WHIM
- Likely that lag infall result from interaction
with WHIM - LCDM predicts that WHIM contains bulk of LG
baryons extends to gt 1Mpc