NonMalleable Encryption From Any Semantically Secure One - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

NonMalleable Encryption From Any Semantically Secure One

Description:

Non-Malleable Encryption From Any Semantically Secure One ... Many well-known cryptosystems are easily malleable. GM Encryption: Enc(0) = r2, Enc(1) = yr2. ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 42
Provided by: Vin579
Category:

less

Transcript and Presenter's Notes

Title: NonMalleable Encryption From Any Semantically Secure One


1
Non-Malleable Encryption From Any Semantically
Secure One
Rafael Pass
Abhi Shelat
Vinod Vaikuntanathan
Cornell
MIT
IBM Zurich
2
Public-Key Encryption
pk
sk
C Enc(pk,m)
C
ALICE
BOB
Can I find partial info about m ?
EVE
3
Privacy (Semantic-security) GM
? PPT adversary Eve, ? PPT Simulator S, ? PPT
Relation R
pk, Enc(m)
meve
Pr R(m,meve) 1 Pr R(m,msim) 1
4
Is Semantic Security enough ?
Auctioneer
Enc(x1)
Enc(x)
Eve does not necessarily know x, but she could
produce Enc(x1)
5
Coin-Tossing Protocols
Ha! I can make coin 0
C3Enc(b3)
C3Enc(b1?b2)
C1Enc(b1)
C2Enc(b2)
coinb1?b2?b3
Eve does not necessarily know b1 or b2, but she
could produce Enc(b1 ?b2)
6
Non-Malleability DDN
? PPT adversary Eve, ? PPT Simulator S, ? PPT
Relations R ? Message Samplers M
m ? M
pk, Enc(m)
pk
Csim
a valid ciphertext Ceve
meveDec(Ceve, sk)
msimDec(Csim, sk)
Pr R(pk,m,meve) 1 Pr R(pk,m,msim) 1
7
Non-malleability
  • Many well-known cryptosystems are easily
    malleable
  • GM Encryption Enc(0) r2, Enc(1) yr2.
  • y.Enc(0) Enc(1)
  • El-Gamal Enc(m) (gr, m.grx)
  • Enc(2m) (gr,(2m)grx)
  • In general any homomorphic encryption is
    malleable.

8
Previous Results
  • Non-malleability Strictly Stronger DDN
  • Private-key Encryption
  • Semantically Secure Encryption -gt Non-malleable
    Encryption with no extra assumptions DDN

9
Previous Results
  • Semantically Secure Encryption Trapdoor
    Permutation gt Non-malleable Encryption DDN
  • DDN-Lite Semantically Secure Encryption gt
    One-message Non-malleable Encryption Naor,
    informal
  • DDN-lite is not many-message NM GL

encryption doesnt ? TDP GMR
10
Are there Non-malleable Public-key Encryption
Schemes ?
  • Yes! This work
  • Semantically Secure Encryption gt
  • Many-message (fully) Non-malleable Encryption

No extra assumptions
11
Construction Overview
  • Step 1 Single messagegtMany message NM
  • A new, stronger definition of NM Encryption
  • For this definition, single-message NM gt
    many-message NM
  • Step 2 Construct Single message NM Enc
  • Secret-Parameter NIZK from Semantically Secure
    Enc
  • NM Encryption using Secret Parameter NIZK

12
Recall DDN Definition
? PPT adversary Eve, ? PPT Simulator S, ? PPT
Relations R ? Message Samplers M
pk, Enc(m)
m ? M
pk
Csim
a valid ciphertext Ceve
meveDec(Ceve, sk)
msimDec(Csim, sk)
Pr R(pk,m,meve) 1 Pr R(pk,m,msim) 1
13
To Bot or Not to Bot ?
Dolev, Dwork, Naor 00
Implicitly, fi e E(ßi) implies fi is a valid
ciphertext. Thus, Adversary wins only if she
outputs a valid ciphertext.
14
Coin-flipping example
C1Enc(b1)
C2Enc(b2)
If C1 and C2 are valid, coinb1?b2 Else, if C1 is
valid, coinb1 Else, if C2 is valid, coinb2
Suppose Eve could Enc(1) ? Another Enc(1) Enc(0)
? Invalid ciphertext. Then coin 0!!
15
Our Definition
? PPT adversary Eve, ? PPT Simulator S, ? PPT
Relations R
pk, Enc(m)
pk
Could be an invalid ciphertext
Ceve
Csim
If Ceve is invalid, meve ?
meveDec(Ceve, sk)
msimDec(Csim, sk)
Pr R(pk,m,meve) 1 Pr R(pk,m,msim) 1
16
Further Issues Composability
  • Many-message NM
  • Eve gets encryptions of many messages Enc(m1),
    Enc(m2),
  • She cannot produce Enc(m) such that
  • R(m, m1, m2,) 1
  • DDN definition does not compose GL
  • Ours does

17
Definitions
  • We work with an indistinguishability based
    definition,
  • which is equivalent to simulation-based
    definition
  • Makes clear the notion of computational
    independence

18
Indistinguishability-based Definition
? PPT adversary Eve, ? m0,m1
C0 Enc(pk,m0)
C1 Enc(pk,m1)
C?? C0
C ? C1
?
mDec(C, sk)
mDec(C, sk)
19
Definition (in all gory detail)
Indistinguishability Game
? PPT adversary Eve, ? PPT distinguisher Dist
pk
m10,, mk0 m11,, mk1
Expt(b)
Enc(pk,mbi)i
(C1,C2,,Ck)b
Dec
(D1,D2,,Dk)b
PrDist(D1,D2,,Dk)b 1 ? 1/2
20
Single-msg NM gt Many-msg NM
  • Use the indistinguishability-based definition
  • A simple hybrid argument

21
Now. . .
  • Stronger definition can be met, assuming just
    semantically secure encryption
  • Applications Fully Non-malleable encryption
    from
  • Ajtai-Dwork, GGH
  • Computational Diffie-Hellman

22
Construction of the Non-Malleable Encryption
Scheme
23
DDN Idea 50,000 feet
  • Add redundancy to the cipher-text
  • Not all strings are valid cipher-texts
  • Prove consistency in zero-knowledge
  • Prove that cipher-text is valid in
    non-interactive zero-knowledge

24
NIZK in CRS Model
God
V(PP,x,?) ACC ?
PP
(x,w)
Proof ?
Verifier
Prover
Soundness Pr??P(PP) V(PP,x, ?) ACC
negl ZK ? PPT Sim s.t ?x e L, Sim(x) PP,
P(PP,x,w)
25
The DDN Idea
For NIZK
(1) Generate n pairs of keys
PK11 PK21 ? ? ? PKn1 PK12 PK22 ? ? ?
PKn2
,PP)
(
PK
(2) Enc (PK, m) Generate (vk, sk) for a sig
scheme
Say n-bit vk 0, 1, ? ? ? 1
PK20
? ? ?
PKn0
PK10
(
)
? ? ?
PK11
PK21
PKn1
26
The DDN Idea
For NIZK
(1) Generate n pairs of keys
PK11 PK21 ? ? ? PKn1 PK12 PK22 ? ? ?
PKn2
,PP)
(
PK
(2) Enc (PK, m) Generate (vk, sk) for a sig
scheme
Say n-bit vk 0, 1, ? ?
1
? ?
Enc(PK10,m)
(
)
? ?
Enc(PK21,m)
Enc(PKn1,m)
27
The DDN Idea
For NIZK
(1) Generate n pairs of keys
PK11 PK21 ? ? ? PKn1 PK12 PK22 ? ? ?
PKn2
,PP)
(
PK
(2) Enc (PK, m) Generate (vk, sk) for a sig
scheme
n-bit vk 0, 1, ? ? 1
? ?
Enc(PK10,m)
(
)


? ?
Enc(PK21,m)
Enc(PKn1,m)
Signsk
NIZK proof that all components are encryptions
of the same message

28
The DDN Idea
  • Cipher-text looks like
  • C1,C2,,Cn, NIZK Proof, Signature
  • To Decrypt
  • Check the signature. If invalid signature, output
    ?
  • Check the NIZK Proof. If proof is not accepting,
    output ?
  • Otherwise decrypt the first component of
    ciphertext and output the message

29
Why does it work ? (Informally)
  • For starters
  • Given PK,PK and Enc(m, PK), can the adversary
    output Enc(m, PK) such that R(m,m) 1 ?
  • No! That would violate semantic security of PK.

30
Why does it work ? (Informally)
  • Given a cipher-text C1,C2,,Cn, NIZK Proof,
    Signature, what can adversary do?
  • She has to give me n encryptions
  • Encryptions of different messages ? No !
    (Soundness of NIZK)
  • Encryptions on the same set of public-keys ? No !
    (Unforgeability of the signature)
  • Has to contain an encryption on a different
    position, of a related message (Violation of
    semantic sec)

31
  • Arent we done ?
  • No! The state of the art requires trapdoor
    permutations
  • Do we really need NIZK in CRS model ?
  • Observe Decryptor is the one that checks the
    NIZK proof.
  • Secret-Parameter NIZK To check the validity of
    the proof, need secret information

32
NIZK in CRS Model
God
V(PP,x,?) ACC ?
PP
(x,w)
Proof ?
Verifier
Prover
Soundness Pr??P(PP) V(PP,x, ?) ACC
negl ZK ? PPT Sim s.t ?x e L, Sim(x) PP,
P(PP,x,w)
33
Secret-Parameter NIZK
V(PP,SP, x,?) ACC ?
God
PP
PP,SP
(x,w)
Proof ?
Verifier
Prover
Soundness Pr??P(PP) V(PP, SP,x, ?) ACC
negl ZK ? PPT Sim s.t ?x e L, Sim(x) PP,SP,
P(PP,x,w)
34
Construct Secret-Parameter NIZK
Start with a ?-protocol
(x,w)
x
ce0,1
Verifier
Prover
  • Completeness x e L gt Prover can compute both z0
    and z1
  • Soundness If there is both an accepting z0 and
    z1, then x e L
  • ZK If I know c before I send a, I can compute
    both z0 and z1

?-protocols exist for all L e NP Blums
Hamiltonicity
35
Construct Secret-Parameter NIZK
(x,w)
x
a
c
zc
Verifier
Prover
PK0 PK1
PK0 PK1
God
SKb
(x,w)
?a, Enc(PK0,z0), Enc(PK1,z1)
36
Proof
  • Completeness Prover can compute both z0 and
    z1.
  • Soundness If there is both an accepting z0 and
    an accepting z1, then x e L.
  • ZK By Semantic security of the encryption,
    Verifier does not know z1-b.

37
Our NM Enc Construction
For NIZK
(1) Generate n pairs of keys
PK11 PK21 ? ? ? PKn1 PK12 PK22 ? ? ?
PKn2
,PP)
(
PK
(2) Enc (PK, m) Generate (vk, sk) for a sig
scheme
n-bit vk 0, 1, ? ? 1
? ?
Enc(PK10,m)
(
)


? ?
Enc(PK21,m)
Enc(PKn1,m)
Signsk
NIZK proof that all components are encryptions
of the same message

Designated verifier
38
CCA-2 Security ? ? ?
  • Adv cannot win the indistinguishability game,
    even if she has access to a decryption oracle.
  • No! Bounded Soundness. If I can query the
    verifier on poly(n) many proofs, I can find SP !

39
More Results
  • Bounded CCA2-Security
  • As long as the adversary queries the decryption
    oracle less than m times, security is maintained

40
Perspective
  • Non-malleability models computational independence

41
  • Thank You
Write a Comment
User Comments (0)
About PowerShow.com