Title: Long Range Dependence
1Long Range Dependence
- Processes With Long Memory
2Introduction
- ARMA models have exponentially decaying ACF
- This is not always true sometimes it has
important implications - E.g. Artificial traffic generation
3(No Transcript)
4(No Transcript)
5Nile River Minima
6- Slope 0.27 ?
- Slope 0.73 1 - ?
7Ethernet, Bytes
8(No Transcript)
9(No Transcript)
10(No Transcript)
11AR(1)
12(No Transcript)
13Properties of LRD sequences
14Spectral Properties (i.e. in Fourier domain)
15(No Transcript)
16Draw Y(t) on the board
17(No Transcript)
18(No Transcript)
19(No Transcript)
20Nile Time Series, Fractionally Differenced
21(No Transcript)
22(No Transcript)
23Fractionally Integrated White Noise
H0.5
H0.99
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30Fractional Gaussian Noise
H0.5
H0.99
31(No Transcript)
32(No Transcript)
33Aggregation Properties
34(No Transcript)
35Quiz a
36Quiz b
37Quiz c
38(No Transcript)
39LRD comes from Heavy Tail
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45Nile
Ethernet Byte
Ethernet Packet
46All you need to know about Wavelets
Original time series (Sprint)
- Wavelet localized Fourier analysis
- Sj Approximation at octave j
- D_j detail at octave j
- Original time series is the sum of all details
D1 Detail at octave 1
S1 Coarse approximation at octave 1
47Wavelet decomposition
Wavelet coefficient
48(No Transcript)
49Nile
Ethernet Bytes
Ethernet Packets
50(No Transcript)
51ARIMA (p0,d1,q0)
52ARIMA (p3,d1,q3)
53(No Transcript)
54Sprint data, raw
Differenced at lags 1 and 16
55(No Transcript)
56(No Transcript)
5756
58Wavelet Analysis of Non Stationary TS, nb
vanishing moments 1
57
59Wavelet Analysis of Non Stationary TS, nb
vanishing moments 2
58
60Application to Sprint Data wavelet analysis does
not find LRD
Sprint data, raw
Sprint data, differenced
59
61(No Transcript)
62Nile Data, FARIMA forecast
63Nile Data, ARIMA forecast
64Case Studies
65(No Transcript)
66(No Transcript)
67Impact on Confidence Intervals
- Example mobility model
- Mobility models may exhibit some aspects of long
range dependence - See Augustin Chaintreau, Pan Hui, Jon Crowcroft,
Christophe Diot, Richard Gass, and James Scott.
"Impact of Human Mobility on the Design of
Opportunistic Forwarding Algorithms". - The random trip model supports LRD
68Long Range Dependent Random Waypoint
- Consider the random waypoint without pause, like
before, but change the distribution of speed
69LRD means high variability
70Practical Implications
71Average Over Independent Runs
72Compare to Single Long Run